
Integer Complexity, Addition Chains, and
Well-Ordering

by

Harry J. Altman

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in the University of Michigan
2014

Doctoral Committee:

Professor Jeffrey C. Lagarias, Chair
Professor Alexander Barvinok
Professor Andreas R. Blass
Associate Professor Kevin J. Compton
Professor Martin J. Strauss

For my grandparents

ii

Acknowledgments

The author is grateful to Joshua Zelinsky, who originally suggested the subject of

integer complexity, and together with whom much of the work in Chapter 2 was

conducted.

The author is grateful to Juan Arias de Reyna for much helpful discussion regard-

ing integer complexity – improving notation, clarifying statements, and providing

shorter proofs than the author’s of the lower bound in Proposition 3.6.3 and the

k = 1 case of Lemma 2.4.5.

The author is grateful to his advisor Jeffrey C. Lagarias, for suggesting the ad-

ditional topic of addition chains, for pointing out the relations to computational

complexity issues, and for much helpful discussion.

The author thanks in addition the following people: J. Iraids and K. Podnieks

for providing much helpful numerical data; Andreas Blass, Paul Pollack, and Mike

Bennett for suggesting references; E. H. Brooks for discussion regarding some of the

proofs in Chapter 5; J. Heidi Soderstrom for help translating references into English;

and A. Mishchenko for providing his LATEX files for his dissertation, from which the

formatting of this dissertation has largely been copied.

Work of the author was supported by NSF grants DMS-0943832 and DMS-1101373.

iii

Preface

A note to the reader: The bulk of this thesis, Chapters 2 through 5, were originally

written as separate papers (the paper which became Chapter 2 was co-authored with

J. Zelinsky). As such, each has its own individual abstract in addition to the over-

all abstract, and the initial few sections of each chapter repeat much information

from previous chapters. Appendix A was originally an appendix to Chapter 3, and

Appendices B and C were originally appendices to Chapter 5.

iv

Contents

Dedication ii

Acknowledgments iii

Preface iv

List of Tables viii

List of Figures ix

List of Appendices x

Abstract xi

Chapter

1 Introduction 1

1.1 Notions of complexity for natural numbers 1

1.2 Main results: Integer complexity 8

1.3 Main results: Addition chains . 12

1.4 Other notions of complexity . 15

1.5 Plan of this thesis . 18

2 Numbers with Integer Complexity Close to the Lower Bound 19

2.1 Introduction . 19

2.2 Properties of the defect . 25

2.3 Good factorizations and solid numbers 29

2.4 The Classification Method . 32

2.5 Determination of all elements of defect below a given bound r . . 38

2.6 Applications . 49

3 Integer Complexity and Well-Ordering 54

3.1 Introduction . 54

3.2 Properties of the defect . 60

3.3 Stable defects and stable complexity 63

3.4 Low-defect polynomials . 65

3.5 Facts from order theory and topology 74

3.6 Well-ordering of defects . 78

v

3.7 Variants of the main theorem . 82

4 Addition Chains and Well-Ordering 87

4.1 Introduction . 87

4.2 Comparison of addition chain complexity and integer complexity . 95

4.3 The A-defect and A-stabilization 97

4.4 Bit-counting in numbers of small defect 101

4.5 Cutting and pasting well-ordered sets 103

4.6 Well-ordering of defects . 105

4.7 Bounds on order type for small A-defect values 109

4.8 Concluding Remarks . 112

5 Integer Complexity: Computational Methods and Results 113

5.1 Introduction . 113

5.2 The defect, stability, and low-defect polynomials 123

5.3 Further notes on stabilization and stable complexity 132

5.4 Low-defect expressions, the nesting ordering, and structure of low-
defect polynomials . 133

5.5 The truncation operation . 149

5.6 Algorithms: Computing good coverings 158

5.7 Algorithms: Computing stabilization length K(n) and stable com-
plexity ‖n‖st . 165

5.8 Results of computation . 174

6 Open problems and future research 177

6.1 Additional structure in the defect set 177

6.2 Generalization to addition-multiplication chains 180

6.3 Complexity based on a number other than 1 180

6.4 Further stabilization hypotheses 181

6.5 Instability . 182

6.6 Counting problems . 184

6.7 Computability and complexity-theoretic problems 185

6.8 Remaining computational problems 186

Appendix

A Conjectures of J. Arias de Reyna 187

B Good coverings of closed intervals 189

C Implementation notes 192

D Leaders with defect at most 1 195

vi

References 196

vii

List of Tables

5.1 Numbers that seem to have unusual drop patterns 122

6.1 Numbers that seem to have unusual drop patterns 183

D.1 Leaders of defect at most 1 . 195

viii

List of Figures

Figure 1.1 A tree for n = 11 using 8 ones and of height 3 18

Figure 3.1 Illustration of substitution into a low-defect polynomial 57

Figure 3.2 Illustration of substitution of 30 into a low-defect polynomial . . 69

Figure 5.1 Illustration of low-defect tree . 135

Figure 5.2 Two different trees yielding the polynomial 4x+ 2 139

Figure 5.3 Illustration of bijection between variables and non-root vertices . 140

ix

List of Appendices

Appendix A: Conjectures of J. Arias de Reyna 187
Appendix B: Good coverings of closed intervals 189
Appendix C: Implementation notes . 192
Appendix D: Leaders with defect at most 1 195

x

Abstract

In this dissertation we consider two notions of the “complexity” of a natural num-

ber, the first being addition chain length, and the second known simply as “integer

complexity”.

The integer complexity of n, denoted ‖n‖, is the smallest number of 1’s needed to

write n using an arbitrary combination of addition and multiplication. It is known

that ‖n‖ ≥ 3 log3 n for all n.

We consider the difference δ(n) := ‖n‖ − 3 log3 n, which we call the defect of n.

We consider the set of all defects – the set

D := {δ(n) : n ∈ N}.

We show that, as a subset of the real numbers, D is well-ordered, with order type

ωω; we also show the same for several variants of this set. Moreover, we show that,

for k ≥ 1 a natural number, D ∩ [0, k) has order type precisely ωk.

We also use the defect to prove stabilization results about ‖n‖. Specifically, for

any n, there exists K = K(n) such that for k ≥ K, we have

δ(3kn) = δ(3Kn).

We call K(n) the stabilization length of n.

Finally, we provide a way of, given r > 0, computing all numbers n with δ(n) < r.

We use this to show that the stabilization length K(n) is effectively computable. The

algorithm is also, empirically, much faster than existing methods for computing ‖2k‖,
and we use it to prove that ‖2k3`‖ = 2k + 3` for 0 ≤ k ≤ 48 and ` ≥ 0, with k and `

not both 0.

In parallel to our results for integer complexity, we also consider addition chain

length. An addition chain for n is defined to be a sequence (a0, a1, . . . , ar) such that

a0 = 1, ar = n, and, for any k with 1 ≤ k ≤ r, there exist 0 ≤ i, j < k such that

ak = ai + aj; the number r is called the length of the addition chain. The shortest

xi

length among addition chains for n, called the addition chain length of n, is denoted

`(n). The number `(n) is always at least log2 n.

We consider the difference δ`(n) := `(n)− log2 n, which we call the addition-chain

defect of n, and the set of all addition-chain defects

D ` := {δ`(n) : n ∈ N}.

We show that D ` is also a well-ordered set with order type ωω. We also use the

defect to prove stabilization results about `(n); specifically, for any n, there exists

K ′ = K ′(n) such that for k ≥ K ′, we have

δ(2kn) = δ`(2K
′
n).

xii

Chapter 1

Introduction

1.1 Notions of complexity for natural numbers

In this dissertation we will consider the complexity of computing natural numbers

under some simple computational models. When we speak of computing a natural

number, we mean building it up in some finite number of steps from the number 1,

which is the most basic of all natural numbers and generates all the others. There

are various models of computation we could turn our attention to, but we will focus

on two: One is known as “integer complexity” (Section 1.1.1), and the other is that

of addition chains (Section 1.1.2). Some of the others will be briefly discussed in

Section 1.4.

In all these cases, we are discussing building up natural numbers from the number

1; what we vary is what tools are allowed. Of course, every natural number n can be

written as the sum of n ones, and if we only allow the use of addition, it is impossible

to do better, so this is not a very interesting model; something more is needed to

allow shorter, less obvious ways of writing n.

Thus we define the integer complexity of a natural number n to be the least number

of 1’s needed to write it using any combination of addition and multiplication, with

the order of the operations specified using parentheses grouped in any legal nesting.

For instance, 11 has complexity of 8, since it can be written using 8 ones as

11 = (1 + 1 + 1)(1 + 1 + 1) + 1 + 1,

but not with any fewer. This notion was implicitly introduced in 1953 by Kurt

Mahler and Jan Popken [38]; they actually considered an inverse function, the size

of the largest number representable using k copies of the number 1. (More generally,

they considered the same question for representations using k copies of a positive real

number x.) Integer complexity was explicitly studied by John Selfridge, and was later

1

popularized by Richard Guy [29, 30]. Following J. Arias de Reyna [8] we will denote

the complexity of n by ‖n‖.
A second model of complexity is that of addition chains. An addition chain for the

number n is defined to be a sequence (a0, a1, . . . , ar) such that a0 = 1, ar = n, and,

for any k with 1 ≤ k ≤ r, there exist 0 ≤ i, j < k such that ak = ai+aj; the number r

is called the length of the addition chain. The shortest length among addition chains

for n, called the addition chain length of n, is denoted `(n). Addition chains were

introduced in 1894 by H. Dellac [22] and reintroduced in 1937 by A. Scholz [41], who

raised a series of questions about them.

We could consider other similar notions, such as allowing addition, multiplication,

and free reuse (see Section 1.4), but this dissertation will focus on these two, which

share a number of similarities – some obvious, others less so.

Both integer complexity and addition chain length seem to be moderately hard

to compute. Let us define the following computational problems:

INTEGER COMPLEXITY

• INSTANCE: Positive integers n and k, both encoded in binary.

• QUESTION: Is ‖n‖ ≤ k?

ADDITION CHAIN LENGTH

• INSTANCE: Positive integers n and k, both encoded in binary.

• QUESTION: Is `(n) ≤ k?

Both problems are known to be in the complexity class NP [8, 24] (and so in

particular they are computable in exponential time), but neither is known to be in

P (or even co-NP), nor is either known to be NP -complete. However, an extension

of the problem ADDITION CHAIN LENGTH is known to be NP -complete, as will

be discussed in Section 1.1.2. So both integer complexity and addition chain length

have the property that to verify an upper bound is easy, but to verify a lower bound

seems to be hard.

By better understanding the structure of integer complexity and addition chain

length, we can find new ways of lower-bounding them. In this dissertation, we will

explore the structure of integer complexity and addition chains, by making use of

functions we call the defect ; see Sections 1.2.1 and 1.3.1. We will find much regularity

in the set of values that the defect takes on, and, in Chapter 5, we will use it to provide

a new algorithm for computing ‖n‖ (as well as more detailed information), one which,

2

unlike existing approaches, does not require first computing the complexities of all

the numbers up to n.

Both addition chains and integer complexity have some specific outstanding open

problems. For addition chain length, an open problem is the Scholz-Brauer conjecture,

([41, Question 3]), which asserts that

`(2n − 1) ≤ n+ `(n)− 1;

see Section 1.1.2 for more on the history of this question. For integer complexity, an

outstanding problem is that of whether, for all k ≥ 1,

‖2k‖ = 2k;

it is clear that ‖2k‖ ≤ 2k, so the question is one of the lower bound.

It’s worth noting here that this is not an isolated question, unconnected to the

larger internal structure of integer complexity. A deeper outstanding question re-

garding integer complexity is understanding the values of the function ‖n‖
lnn

, and, in

particular, determining lim supn→∞
‖n‖
lnn

; if indeed ‖2k‖ = 2k for k ≥ 1, that would

require this limit to be at least 2
ln 2

. See Section 1.1.1 for more on this.

Now let us examine the particulars of integer complexity and addition chains in

more detail.

1.1.1 Integer complexity

The complexity of a natural number n is the least number of 1’s needed to write it

using any combination of addition and multiplication, with the order of the operations

specified using parentheses grouped in any legal nesting. Following J. Arias de Reyna

[8] we will denote the complexity of n by ‖n‖.
Notice that for any natural numbers n and m we will have

‖1‖ = 1, ‖n+m‖ ≤ ‖n‖+ ‖m‖, ‖nm‖ ≤ ‖n‖+ ‖m‖,

More specifically, for any n > 1, we have

‖n‖ = min
a,b<n∈N

a+b=n or ab=n

(‖a‖+ ‖b‖).

This fact together with ‖1‖ = 1 allows one to compute ‖n‖ recursively by dynamic

3

programming. If the equality ‖n‖ = ‖a‖+ ‖b‖ holds, with either n = a+ b or n = ab,

then we will say n can be written most-efficiently as a+ b or as ab, respectively.

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n ≤ ‖n‖ ≤ 3 log2 n, n > 1.

The upper bound can be obtained by writing n in binary and finding a representation

using Horner’s algorithm. The lower bound follows from results described below. The

lower bound is known to be attained infinitely often, namely for all n = 3k. The

constant in the upper bound above can be improved further [52], and it is an open

problem to determine the true asymptotic order of magnitude of the upper bound.

At present even the possibility that an asymptotic formula ‖n‖ ∼ 3 log3 n might hold

has not been ruled out.

Let E(k) be the largest number writable with k ones, i.e., with complexity at most

k. John Selfridge (see [29]) proved that E(1) = 1 and that the larger values depend

on the residue class of k modulo 3, namely for k = 3j + i ≥ 2,

E(3j) = 3j

E(3j + 1) = 4 · 3j−1

E(3j + 2) = 2 · 3j

Observe that E(k) ≤ 3k/3 in all cases, and that equality holds for cases where 3

divides k. These formulas also show that E(k) > E(k − 1), a fact that implies that

the integer E(k) requires exactly k ones. This yields the following result:

Theorem 1.1.1. For k = 0, 1, 2 and for all ` ≥ 0 with k + ` ≥ 1, one has

‖2k · 3`‖ = 2k + 3`.

This suggests the following conjecture, which was originally formulated as a ques-

tion in Guy [29].

Conjecture 1.1.2. For all k ≥ 0 and all ` ≥ 0 with k + ` ≥ 1 there holds

‖2k3`‖ = 2k + 3`.

Note that this conjecture would in particular imply ‖2k‖ = 2k, for all k. Selfridge

raised this special case in a contrary form, asking the question whether there is some

4

k for which ‖2k‖ < 2k (see [29]). The truth of ‖2k‖ = 2k would also immediately

imply the lower bound

lim sup
n→∞

‖n‖
lnn
≥ 2

ln 2
.

Computer experiments seem to agree with this prediction and even allow the possi-

bility of equality; see Iraids et al [33]. Meanwhile, as mentioned above, if we define

Cmax := lim sup
n→∞

‖n‖
lnn

,

the following question remains open:

Question 1.1.3. Is Cmax = 3
ln 3

, or is Cmax >
3

ln 3
? That is to say, is ‖n‖ ∼ 3 log3 n,

or not?

As such, proving that ‖2k‖ = 2k for all k ≥ 1, let alone Conjecture 1.1.2, would be

a very strong result. And indeed others have suggested the opposite, that ‖2k‖ < 2k

for some k [10], or even [29] that ‖n‖ ∼ 3 log3 n.

Proving that Cmax ≤ 2
ln 2

would probably also be quite difficult. At present, all

known upper bounds on ‖n‖ that hold for sufficiently large n also hold for all n > 1.

(The largest value of ‖n‖
lnn

seen to occur so far is at n = 1439, ‖n‖ = 26, for a value of

approximately 3.5755; this is the largest among all n with n ≤ 1012 [33].) However,

better bounds are known if we do not insist the bound hold for all sufficiently large

n, and only insist they hold on a set of density 1. Let us define

Cmost := inf{C ∈ R : ‖n‖ ≤ C lnn for n on a set of density 1},

so that we have 3
ln 3
≤ Cmost ≤ Cmax ≤ 3

ln 2
. Then it was shown by J. Arias de Reyna

and J. Van de Lune [9] that

Cmost ≤
41747875

2738 ln(2938)
< 3.309.

Notably, this is smaller than the largest seen value that is 26
log 1439

, which the best

bounds on Cmax still are not.

Let us also take a moment to remark on computing ‖n‖. The recursive definition

permits computing ‖n‖ by dynamic programming, but it requires knowing {‖k‖ : 1 ≤
k ≤ n − 1}, so takes exponential time in the input size of n measured in bits. In

particular, a straightforward approach to computing ‖x‖ requires on the order of n2

steps. Srinivas and Shankar [44] obtained an improvement on this, running in time

5

O(nlog2 3), and Arias de Reyna and Van de Lune [9] further improved this to O(n1.231).

As we noted above, the problem “Given n and k in binary, is ‖n‖ ≤ k?” is known to

be in the complexity class NP [8], but it is neither known to be in P , nor known to

be NP -complete.

Finally, we also mention the work of J. Arias de Reyna[8] in 2000 which formulated

a series of conjectures about the structure of ‖ · ‖. Some of these are discussed in

Appendix A.

1.1.2 Addition chains

An addition chain for the number n is defined to be a sequence (a0, a1, . . . , ar) such

that a0 = 1, ar = n, and, for any k with 1 ≤ k ≤ r, there exist 0 ≤ i, j < k such that

ak = ai + aj; the number r is called the length of the addition chain. The shortest

length among addition chains for n, called the addition chain length of n, is denoted

`(n). Addition chains were introduced in 1894 by H. Dellac [22] and reintroduced

in 1937 by A. Scholz [41], who raised a series of questions about them. They have

been much studied in the context of computation of powers, since an addition chain

for n of length r allows one to compute xn from x using r multiplications. Extensive

surveys on the topic can be found in Knuth [35, Section 4.6.3] and Subbarao [46]. It

is common to restrict discussion to addition chains which are increasing, as among

the shortest addition chains for a given number there necessarily can be found one

with this property.

To put it another way, with integer complexity, we were allowed the use of both

addition and multiplication, but had to pay the full cost of a number each time it

was used. With addition chains, by contrast, we are not allowed multiplication, but

we are allowed free reuse – once we construct a number, we may reuse it as often as

we please at no additional cost.

Addition chain length is approximately logarithmic; it satisfies the bounds

log2 n ≤ `(n) ≤ blog2 nc+ ν2(n)− 1,

in which ν2(n) counts the number of 1’s in the binary expansion of n. The lower

bound follows from the observation that the largest number that can be made with

an addition chain of k steps is 2k, since each step can at most double the previous

number. The upper bound follows from writing n using the “binary method”, which

can be defined recursively: The binary chain for 2n is the binary chain for n followed

by 2n, and the binary chain for 2n+ 1 is the binary chain for 2n followed by 2n+ 1;

6

this chain has length blog2 nc + ν2(n) − 1. In fact, A. Brauer [15] proved in 1939

that `(n) ∼ log2 n. This stands in contrast to the case of integer complexity, as

lim supn→∞
‖n‖
lnn

remains unknown.

In addition to being a measure of complexity that is logarithmic in growth, ad-

dition chain length also has a similarity to integer complexity in that it satisfies

`(nm) ≤ `(n) + `(m), as if one has addition chains (a0, . . . , ar) and (b0, . . . , bs), one

may make an addition chain (a0, . . . , ar, arb1, arb2, . . . , arbs). However, this similarity

will mostly not be relevant here.

The addition chain complexity function `(n) seems complicated and hard to com-

pute. An outstanding open problem about it is the Scholz-Brauer conjecture ([41,

Question 3]):

Conjecture 1.1.4 (Scholz, Brauer). For any n ≥ 0,

`(2n − 1) ≤ n+ `(n)− 1.

Partly in order to investigate this conjecture, A. Brauer[15] introduced a restricted

form of addition chains known as star chains. An addition chain (a0, . . . , ar) is called

a star chain if for each nonzero k ≤ r, there is some i < k such that ak = ak−1 + ai.

The length of the shortest star chain for n is denoted `∗(n). Brauer showed that

`∗(2n − 1) ≤ n+ `∗(n)− 1,

so if `(n) = `∗(n), i.e. if there is a shortest addition chain for n which is a star chain,

then the Scholz-Brauer conjecture holds for n. Such a number is known as a Brauer

number. One might hope that all natural numbers are Brauer numbers; however,

Hansen [31] showed that there are in fact infinitely many non-Brauer numbers.

In an attempt to salvage Brauer’s conjecture, Hansen defined a generalization of

the star chain, which he called an `0-chain and which is now also known as a Hansen

chain. A Hansen chain is an addition chain (a0, . . . , ar) such that there some is subset

S ⊆ {0, . . . , r} such that for each 0 < k ≤ r, there is some i < k such that ak = ai+aj,

where j is the largest element of S that is less than k. So a star chain is simply a

Hansen chain with S = {0, . . . , r}. The length of the shortest Hansen chain for n is

denoted `0(n), and one has for Hansen chains the inequality

`0(2n − 1) ≤ n+ `0(n)− 1,

so if `(n) = `0(n) (in which case n is called a Hansen number), the Scholz-Brauer

7

conjecture holds for n. Computations of Clift [18] have verified that all n < 5784689

are Hansen numbers, but 5784689 is not; this remains the smallest n for which the

Scholz-Brauer conjecture remains unknown.

Another difference worth noting between addition chains and integer complexity

is that addition chain length cannot be computed via dynamic programming. Sup-

pose we have a shortest addition chain (a0, . . . , ar−1, ar) for n; one might hope that

(a0, . . . , ar−1) is a shortest addition chain for ar−1, but this need not be the case. An

example is provided by the addition chain (1, 2, 3, 4, 7); this is a shortest addition

chain for 7, but (1, 2, 3, 4) is not a shortest addition chain for 4, as (1, 2, 4) is shorter.

Moreover, there is no way to assign to each natural number n a shortest addition

chain (a0, . . . , ar) for n such that (a0, . . . , ar−1) is the addition chain assigned to ar−1

[35]. This can be an obstacle both to computing addition chain length and to proving

statements about addition chains. Despite this, there has been considerable work on

algorithms in practice for computing addition chain length[12, 48].

As we noted above, the question “Given n and k in binary, is `(n) ≤ k?” is known

to be in the complexity class NP , but it is neither known to be in P , nor known to

be NP -complete. However, an extension of the problem is NP -complete [24]:

Theorem 1.1.5 (P. Downey, B. Leong, R. Sethi). Consider the problem of, given

numbers n1, . . . , nr and k, represented in binary, determining whether there is an

addition chain of length at most k that includes all the numbers n1, . . . , nr. This

problem is NP -complete.

1.2 Main results: Integer complexity

1.2.1 The defect and the defect set

In this dissertation, we will study integer complexity by subtracting off Selfridge’s

lower bound. Specifically:

Definition 1.2.1. The (integer complexity) defect of a natural number n is given by

δ(n) = ‖n‖ − 3 log3 n.

This might seem to be an unnatural object of study, compared to the ratio ‖n‖
3 log3 n

.

However, its set of values turns out to have very nice structure. First, let us introduce

some notation for it.

8

Definition 1.2.2. The (integer complexity) defect set, denoted D , is the set of all

defects, {δ(n) : n ∈ N}.

Then we can state our first main result:

Theorem 1.2.3 (Well-ordering theorem for integer complexity). As a subset of

[0,∞), the set D is a well-ordered set, with order type ωω. Moreover, for k ≥ 1

an integer, the set D ∩ [0, k) has order type precisely ωk.

This well-ordering of the defect set D reveals new fundamental structure in the

interaction between addition and multiplication. Some of the tangledness of that

interaction may be reflected in how the set D grows more complicated as its elements

get larger.

1.2.2 Stabilization for integer complexity

Since ‖3k‖ = 3k for k ≥ 1, while integer complexity of other other powers is hard to

determine, one might hope that one has ‖3n‖ = ‖n‖+ 3 for all n > 1. Unfortunately,

this is not the case; for instance, ‖107‖ = 16 while ‖321‖ = 18. Nonetheless, a weaker

version of this does hold:

Theorem 1.2.4 (Stabilization theorem for integer complexity). For any natural num-

ber n, there exists a K = K(n) such that for any k ≥ K, one has

‖3kn‖ = 3(k −K) + ‖3Kn‖.

Moreover, K(n) is effectively computable.

Proving that K(n) is computable turns out to be substantially more difficult than

proving it exists. We will prove that K exists in Chapter 2, and show that it is

computable in Chapter 5; see also Section 1.2.5.

Because of this theorem, we will make the following defintion:

Definition 1.2.5. We say a natural number n is stable if, for all k ≥ 0,

‖3kn‖ = 3k + ‖n‖.

So then Theorem 1.2.4 says that for any n, there exists K(n) such that 3K(n)n is

stable; the smallest such K will be called the stabilization length of n. We also make

the following definition:

9

Definitions 1.2.6. The stable complexity of n, denoted ‖n‖st, is defined to be ‖3kn‖−
3k, where k is chosen such that 3kn is stable. We also define ∆(n) = ‖n‖ − ‖n‖st.

That is to say, the stable complexity of n is what the complexity of n would be

“if n were stable”; it’s equal to ‖n‖ if and only if n is stable.

Empirically, it seems that most numbers are stable, but a positive fraction, around

3%, are unstable. Still, it is difficult to find examples that are “far from stable”, in

that either K(n) or ∆(n) are large. Exactly computing K(n) or ∆(n), while possible

with the algorithms in Chapter 5, is slow, but from computations of ‖n‖ we can at

least put lower bounds on these quantities. Looking at n ≤ 315, we find 17 numbers,

such as 3643, which must have K(n) ≥ 5 (and ∆(n) ≥ 1); no examples are presently

known that demonstrate that K can ever be at least 6. We also find the example

of n = 4721323, which has the surprising property ‖3n‖ < ‖n‖, and so must have

∆(n) ≥ 4 (and K(n) ≥ 1); no examples are presently known that demonstrate that ∆

can ever be at least 5. Whether K(n) and ∆(n) can be arbitrarily large, or whether

they each have some uniform upper bound, remains unknown.

1.2.3 Variations on the defect set

We can also define some variations on the defect set. One thing we can do is restrict

to defects of stable numbers. We will show in Chapter 3 that if δ(n) = δ(m), then n

is stable if and only if m is stable. Thus it makes sense to talk about “stable defects”.

Thus we can define Dst, the set of stable (integer complexity) defects. We will see

that this set too is well-ordered with order type ωω.

We can discriminate even further. We will show in Chapter 2 that if δ(n) = δ(m),

then ‖n‖ ≡ ‖m‖ (mod 3). It follows that we can split the set of defects D into

sets D0, D1, D2 according to these congruence classes modulo 3. We will prove in

Chapter 3 that these sets too are well-ordered with order type ωω. We can combine

this idea with that of restricting to stable defects, forming sets D0
st, D1

st, D2
st; these

too will turn out to be well-ordered with order type ωω.

1.2.4 Numbers of small defect and low-defect polynomials

The basic method in all of this is to restrict the form that numbers of small defect can

take. We will do this by showing that any number of small defect can be represented

by substituting powers of 3 into certain multilinear polynomials we call low-defect

polynomials.

In Chapter 2, we will provide a method where, if we know all the numbers of defect

10

less than some α < 1, we can use this to successively determine all the numbers of

defect less than kα for every k. Of course, by itself, this is useless; the method needs

a starting point. But we will show, using a result of Rawsthorne [39], that the only

numbers with defect less than δ(2) = 0.107 . . . are the powers of 3. With this, we can

apply the method repeatedly until we know all the numbers with defect less than 1.

Thus the method “pulls itself up by its own bootstraps”, as once we know all numbers

of defect less than 1, we can apply the method with any step size α < 1. Once we

know this, we will be able to use the method to demonstrate that numbers below a

fixed defect are quite scarce:

Theorem 1.2.7 (Counting numbers of small defect). For real numbers r and x, let

Ar(x) denote the number of natural numbers n ≤ x such that δ(n) < r. Then for any

r > 0,

Ar(x) = Θr((log x)brc).

However, much of the power of the method will not be demonstrated until Chap-

ter 3, where we show that the output of this method has a tractable form. There

we show that for any s > 0, there exists a finite set of low-defect polynomials Ss
such that any number of defect less than s can be written as f(3n1 , . . . , 3nk)3nk+1 for

some f ∈ Ss and nonnegative n1, . . . , nk+1. However, using solely the methods of

Chapter 3, the low-defect polynomials may also produce extraneous numbers, with

defect higher than intended. In Chapter 5 we will demonstrate how to modify this

construction so that it no longer produces extraneous numbers; then we will be able

to say that δ(N) < s if and only if N can be written as f(3n1 , . . . , 3nk)3nk+1 for some

f ∈ Ss and nonnegative n1, . . . , nk+1. (We will say that N can be 3-represented by

f ; or, more properly, when nk+1 > 0, by f̂ , which we will define later.)

So with this approach, we can get at properties of the set of defects by examining

properties of low-defect polynomials. For instance, as the defects involved get larger,

the low-defect polynomials required get more complicated; one way in which this

occurs is that they require more variables. In fact, we will see that to cover defects

up to a real number s, one needs low-defect polynomials with up to bsc variables.

And it happens that if we have a low-defect polynomial f in k variables, and consider

the numbers f(3n1 , . . . , 3nk), then the defects of the numbers obtained this way form

a well-ordered set of order type at least ωk and less than ωk+1. It is this that leads

us to Theorem 1.2.3, that for k ≥ 1, the set D ∩ [0, k) has order type precisely ωk –

and hence that the set D has order type ωω.

11

1.2.5 Algorithms and computational results

In Chapter 5 we present a series of algorithms for working with and computing low-

defect polynomials and for extracting from them information about integer complex-

ity. We describe here what these algorithms do and some of the computations we

have performed with our implementation of them in a series of Haskell programs.

In Section 5.6 we will show that not only does a set Ss exist, but we can effectively

compute it. Algorithm 1 provides the base case Sα; Algorithms 2 and 3 allow this to

be built up to Ss; and Algorithms 4, 5, and 6 allow one to additionally choose Ss so

as not to generate extraneous numbers.

By making use of these, we then describe Algorithm 7 and Algorithm 8, which

provide a method of computing the quantity K(n) from Theorem 1.2.4 and thus prove

that it is computable.

But these methods can be used not only to compute K(n) but also to simul-

taneously compute ‖n‖; Algorithm 9 computes both of these. Algorithm 10 is an

optimized version for when n is a power of 2 – which, due to Conjecture 1.1.2, is a

case of some interest. In general, using Algorithm 9 is not faster than computing ‖n‖
by existing methods, but the special case of Algorithm 10 turns out to be much faster

than previous methods. By using it, we are able to prove by the following theorem:

Theorem 1.2.8. If 0 ≤ k ≤ 48 and ` ≥ 0 with k + ` > 0, ‖2k3`‖ = 2k + 3`.

This is a substantial improvement over the existing theorem that this is true for

1 ≤ k ≤ 2, as well as over the results in this direction of Iraids et. al. [33], who,

with a much longer computation, were able to verify that (for k and ` not both

zero) ‖2k3`‖ = 2k + 3` whenever 2k3` ≤ 1012. (And so in particular ‖2k‖ = 2k for

1 ≤ k ≤ 39.) Notably, compared to [33], we did not have to lower k or increase

computation time in order to obtain that ` may be arbitrary, but in fact increased k

and shortened computation time.

1.3 Main results: Addition chains

In this section, we present our main results regarding addition chains. These are

largely parallel to our results regarding integer complexity mentioned above, even

though in some cases entirely different methods of proof are needed.

12

1.3.1 The addition chain defect and its defect set

As with integer complexity, we will also study addition chains by subtracting off the

corresponding lower bound. Specifically:

Definition 1.3.1. The addition chain defect of a natural number n is given by

δ`(n) = `(n)− log2 n.

With this we can then define:

Definitions 1.3.2. The addition chain defect set, denoted D `, is the set of all addition

chain defects, {δ`(n) : n ∈ N}.

Then, as in the case of integer complexity, we have:

Theorem 1.3.3 (Well-ordering theorem for addition chains). As a subset of [0,∞),

the set D ` is a well-ordered set, with order type ωω.

The addition chain version of the theorem is visibly weaker than the integer com-

plexity version of the theorem; still, we may turn the analogy into a conjecture:

Conjecture 1.3.4. For k ≥ 1 an integer, the set D ` ∩ [0, k) has order type precisely

ωk.

We are able to recover the missing part of the theorem at least partly. To do so,

let us make the following definition:

Definition 1.3.5. We define f `(k) to be the limit of the initial ωk defects in D `.

Then while we cannot currently prove that f `(k) = k for all k, we can show:

Theorem 1.3.6 (Order type bounds for addition chains). For k a whole number, we

have:

1. For 0 ≤ k ≤ 2, we have f `(k) = k.

2. For 3 ≤ k ≤ 7, we have 2 < f `(k) ≤ k.

3. For 8 ≤ k ≤ 33, we have 3 < f `(k) ≤ k.

4. For k ≥ 34, we have log2(k + 1)− 2.13 < f `(k) ≤ k.

13

In fact, study of the defect for addition chains is not entirely new; other authors

([35, 27, 47, 50]), investigating the behavior of `(n), and in particular the Scholz-

Brauer conjecture, have studied the quantity s(n) := `(n) − blog2 nc, which Knuth

[35] calls the number of small steps of n. This is plainly a rounded off version of the

defect; it is related to our notion of defect by

s(n) = dδ`(n)e.

As Theorem 1.3.3 shows, however, quite a lot of structure is lost in rounding off the

defect.

1.3.2 Stabilization for addition chains

We can also consider stabilization for addition chains. As ‖3k‖ = 3k for k ≥ 1, so

`(2k) = k for k ≥ 0, and so one might hope that in general `(2n) = `(n) + 1; again,

this is not so. Indeed, Thurber[50] showed that all numbers of the form 23 · 2k + 7,

for k ≥ 5, are counterexamples to this. But once again, we do have a stabilization

form of this:

Theorem 1.3.7 (Stabilization theorem for addition chains). For any natural number

n, there exists a K = K`(n) such that for any k ≥ K, one has

`(2kn) = k −K + `(2Kn).

Unlike in the integer complexity case, we do not know whether K`(n) is effectively

computable; see Chapter 6.

1.3.3 Variations on the addition chain defect set

In Chapter 4, we will see that if δ`(n) = δ`(m), then n is `-stable if and only if m

is `-stable, parallel to the results mentioned in Section 1.2.3. Thus, as we can define

Dst for integer complexity, we can define D `
st, the set of stable addition chain defects.

We will see that this set too is well-ordered with order type ωω.

However, the decomposition of the set D into D0, D1, and D2 has no analogue

for D `. For instance, for any whole number k one has `(2k) = k, even though one

always has δ`(2k) = 0.

14

1.3.4 Numbers of small defect and binary digit sums

As with integer complexity, the basic method we present for dealing with addition

chains is again to restrict the form that numbers of small defect can take. In the

case of addition chains, unfortunately, we cannot at present get as good control as

we can in the case of integer complexity. Nonetheless, by making use of the following

theorem of Schönhage[42], we can recover quite a bit:

Theorem 1.3.8 (Schönhage). For any n ≥ 1,

δ`(n) ≥ log2 ν2(n)− Cs,

where

Cs :=
2

3
+

2

3
log2 3− 1

ln 2
− log2 log

4

3
+
∞∑
k=0

log2(1 + 2−6·2
k+1) ≤ 2.13.

Here, ν2(n) denotes the number of 1’s in the binary expansion of n. If we like, we

can extend the analogy with integer complexity by thinking of this as saying that if

δ`(n) < r, then n can be “2-represented” by one of the polynomials

((((x1 + 1)x2 + 1) . . .)xk + 1)xk+1,

where 0 ≤ k ≤ b2r+Csc − 1. However, unlike in the integer complexity case, there is

no guarantee that such a representation need be “most-efficient” (which here would

mean that `(n) = blog2 nc+ν2(n)−1). This unfortunately limits what can be proven

by these means. Still, it is enough to prove Theorem 1.3.3.

Note that while Theorem 1.3.8 is the best known bound of this type when ν2(n) is

large, there are better bounds known when ν2(n) is small. We will give an accounting

of these in Chapter 4. Theorem 1.3.6 is based on Theorem 1.3.8 when k is large, and

these various other results when k is small.

1.4 Other notions of complexity

1.4.1 Addition-multiplication chains

As mentioned in Section 1.1.2, while addition chains, unlike integer complexity, do

not allow for the use of multplication, they do allow for the free reuse of numbers al-

ready constructed. An obvious extension then is the notion of addition-multiplication

15

chains. An addition-multiplication chain is a sequence (a0, . . . , ar) where a0 = 1, and

for k > 1, each ak can either be written as ai + aj or ai · aj for some 0 ≤ i, j < k. We

say that (a0, . . . , ar) is a chain for ar, and r is its length; the length of the shortest

addition-multiplication chain for n is denoted `AM(n). For n ≥ 2, one has

`AM(n) ≥ log2 log2 n+ 1;

however, no corresponding Θ(log log n) upper bound holds. W. De Melo and B.

F. Svaiter showed [23] that, if τ(n) denotes the length of the shortest addition-

multiplication-subtraction chain for n (see below), then for any ε > 0, one has, for n

outside a set of density 0,

τ(n) ≥ lnn

(ln lnn)1+ε
,

and hence the same holds for `AM .

Despite this disanalogy regarding the bounds, it may be possible to prove results

for addition-multiplication chains similar to the ones in this dissertation for addition

chains and for integer complexity. If we define, for n ≥ 2,

δAM(n) = `AM(n)− log2 log2 n− 1,

then it is plausible that the image of δAM could be well-ordered. At present the

question of whether this is so remains unanswered.

1.4.2 Models allowing exponentiatoin

One could also increase the set of operations available beyond addition and multi-

plication. If one simply continues up the chain of hyper operations, the next step

would be to allow exponentiation as well. Models allowing for exponentiation are

also not good for studying defects, however, because the lower bound grows as log∗ n

(or slower), and it’s not clear how to make a continuous version of this.

1.4.3 Models allowing subtraction or division

One could also expand in another direction and allow non-monotonic operations,

such as subtraction. One could expand any of the above models by allowing sub-

traction, considering addition-subtraction chains [35, 42], or integer complexity al-

lowing subtraction, or even addition-multiplication-subtraction chains. (Addition-

multiplication-subtraction chains, it turns out, are related to the P vs. NP problem

16

for Blum-Shub-Smale machines [13].) One could even allow for the use of both sub-

traction and exponentiation, or one could go further than subtraction and allow forms

of division [14].

Unfortunately, the non-monotonicity of subtraction breaks well-ordering. For in-

stance, if we let `±(n) denote the length of the shortest addition-subtraction chain

for n, then one can easily see that for k ≥ 3,

`±(2k − 1) = k + 1.

Thus, if one were to define the addition-subtraction chain defect

δ±(n) := `±(n)− log2 n,

then one would find that the image of this function contains the infinite decreasing

sequence 1 − log2(1 − 2−k). It follows that the set of all addition-subtraction chain

defects is not well ordered with respect to the usual ordering of the real line. Ob-

serve that well-ordering fails here even though the theorem of Schönhage we use to

prove well-ordering for addition chain defects (see Section 1.3.4) has an analogue for

addition-subtraction chains [42].

Similarly, if we were to define ‖n‖− to be the complexity of n with subtraction

allowed, it is easy to check that for k ≥ 3, we have

‖3k − 1‖− = 3k + 1,

and so if we were to define

δ−(n) := ‖n‖− − 3 log3 n,

then the image of this function would contain the infinite decreasing sequence 1 −
3 log3(1− 3−k), and so again would not be well-ordered.

1.4.4 Other complexity measures of trees

Finally, one could also consider addition chains or +, ·, 1-expressions as above, but

measure their complexity in a different way. For instance, a +, ·, 1-expression can be

visualized as a tree; see Figure 1.1. One could consider addition and multiplication as

binary operations and only allow binary trees, or one could consider them as multiary

operations and allow vertices of higher degree. Based on this, J. Iraids et al. [33]

17

considered a quantity they denoted rank(n), which they defined to be the minimum

height of a (not necessarily binary) tree corresponding to a shortest expression for n.

(Note that we must restrict to a shortest expression for n in order for the notion to

be non-trivial; otherwise the rank would always be 0.) They proved furthermore that

rank(n) is related to δ(n) by the inequality

δ(n) ≥
⌊
rank(n)− 1

2

⌋(
1 + 3 log3

6

7

)
;

it may be possible to do more in this direction, but we will not further consider this

notion here.

Figure 1.1: A tree for n = 11 using 8 ones and of height 3, demonstrating rank(11) =
3.

+
PPPPP
H
HH

�����
×
aaa

!!!
+
Q
Q

�
�
1 1 1

+
Q
Q

�
�
1 1 1

1 1

1.5 Plan of this thesis

Chapter 2 presents the basic method of, given r, determining all numbers n with

δ(n) < r. In it we prove Theorem 1.2.7, prove part of Theorem 1.2.4, and verify that

‖2k3`‖ = 2k + 3` for m ≤ 21 with k and ` not both zero. A version of Chapter 2

previously appeared in volume 12 of Integers [7].

Chapter 3 introduces low-defect polynomials and proves the existence of the set

Ss discussed in Section 1.2.4. It then uses this to prove Theorem 1.2.3.

Chapter 4 discusses addition chains and proves Theorems 1.3.3 and 1.3.7.

Chapter 5 shows how, as discussed in Section 1.2.4, the set Ss may be chosen so

as not to yield extraneous numbers. It then discusses computational issues, providing

ten algorithms, which can be used to prove the rest of Theorem 1.2.4 as well as

Theorem 1.2.8.

Chapter 6 discusses open problems and possible directions of future research re-

garding integer complexity, addition chains, and other notions of complexity for nat-

ural numbers.

18

Chapter 2

Numbers with Integer Complexity Close to the

Lower Bound

Abstract: Define ‖n‖ to be the complexity of n, the smallest number of 1’s

needed to write ‖n‖ using an arbitrary combination of addition and multipli-

cation. John Selfridge showed that ‖n‖ ≥ 3 log3 n for all n. Define the defect

of n, denoted δ(n), to be ‖n‖ − 3 log3 n; in this chapter we present a method

for classifying all n with δ(n) < r for a given r. From this, we derive several

consequences. We prove that ‖2m3k‖ = 2m+ 3k for m ≤ 21 with m and k not

both zero, and present a method that can, with more computation, potentially

prove the same for larger m. Furthermore, defining Ar(x) to be the number of

n with δ(n) < r and n ≤ x, we prove that Ar(x) = Θr((log x)brc+1), allowing

us to conclude that the values of ‖n‖ − 3 log3 n can be arbitrarily large.

2.1 Introduction

The complexity of a natural number n is the least number of 1’s needed to write it

using any combination of addition and multiplication, with the order of the opera-

tions specified using parentheses grouped in any legal nesting. For instance, 11 has

complexity of 8, since it can be written using 8 ones as (1+1+1)(1+1+1)+1+1, but

not with any fewer. This notion was introduced by Kurt Mahler and Jan Popken in

1953 [38]. It was later circulated by Richard Guy [29], who discusses it under problem

F26 in his Unsolved Problems in Number Theory [30]. It has since been studied by a

number of authors, e.g. Daniel Rawsthorne [39] and especially Juan Arias de Reyna

[8].

Following Arias de Reyna [8] we will denote the complexity of n by ‖n‖. Notice

that for any natural numbers n and m we will have

‖1‖ = 1, ‖n+m‖ ≤ ‖n‖+ ‖m‖, ‖nm‖ ≤ ‖n‖+ ‖m‖,

19

More specifically, for any n > 1, we have

‖n‖ = min
a,b<n∈N

a+b=n or ab=n

‖a‖+ ‖b‖.

This fact together with ‖1‖ = 1 allows one to compute ‖n‖ recursively. If the equality

‖n‖ = ‖a‖ + ‖b‖ holds, with either n = a + b or n = ab, then we will say n can be

written most-efficiently as a+ b or as ab, respectively.

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n ≤ ‖n‖ ≤ 3 log2 n, n > 1.

The upper bound can be obtained by writing n in binary and finding a representation

using Horner’s algorithm. The lower bound follows from results described below. The

lower bound is known to be attained infinitely often, namely for all n = 3k. The

constant in the upper bound above can be improved further [52], and it is an open

problem to determine the true asymptotic order of magnitude of the upper bound.

At present even the possibility that an asymptotic formula ‖n‖ ∼ 3 log3 n might hold

has not been ruled out.

Let E(k) be the largest number writable with k ones, i.e., with complexity at most

k. John Selfridge (see [29]) proved that E(1) = 1 and that the larger values depend

on the residue class of k modulo 3, namely for k = 3j + i ≥ 2,

E(3j) = 3j

E(3j + 1) = 4 · 3j−1

E(3j + 2) = 2 · 3j

Observe that E(k) ≤ 3k/3 in all cases, and that equality holds for cases where 3

divides k. These formulas also show that E(k) > E(k − 1), a fact that implies that

the integer E(k) requires exactly k ones. This yields the following result:

Theorem 2.1.1. For a = 0, 1, 2 and for all k ≥ 0 with a+ k ≥ 1, one has

‖2a · 3k‖ = 2a+ 3k.

Further results are known on the largest possible integers having a given complex-

ity. We can generalize the notion of E(k) with the following definition:

Definition 2.1.2. Define Er(k) to be the (r+ 1)-th largest number writable using k

20

ones, i.e. complexity at most k, so long as there are indeed r+1 or more distinct such

numbers. Thus Er(k) is defined only for k sufficiently large depending on r. Here

E0(k) = E(k).

Daniel A. Rawsthorne [39] determined a formula for E1(k), namely:

E1(k) =
8

9
E(k), k ≥ 8

Direct computation establishes that E1(k) ≤ (8/9)E(k) holds for all k with 2 ≤ k ≤ 7

(note that E1(1) is not defined). From this fact we deduce that, for 0 ≤ a ≤ 5 and

all k ≥ 0 with a+ k > 0,

‖2a · 3k‖ = 2a+ 3k.

J. Iraids et al. [33] has verified that ‖2a3k‖ = 2a + 3k for 2 ≤ 2a · 3k ≤ 1012 , so in

particular

‖2a‖ = 2a, for 1 ≤ a ≤ 39.

These results together with results given later in this thesis lend support to the

following conjecture, which was originally formulated as a question in Guy [29].

Conjecture 2.1.3. For all a ≥ 0 and all k ≥ 0 with a+ k ≥ 1 there holds

||2a · 3k|| = 2a+ 3k.

This conjecture is presented as a convenient form for summarizing existing knowl-

edge; there is limited evidence for its truth, and it may well be false. Indeed its truth

would imply ‖2a‖ = 2a, for all a. Selfridge raised this special case in a contrary form,

asking the question whether there is some a for which ‖2a‖ < 2a (see [29]).

In this chapter, we will investigate these questions by looking at numbers n for

which the difference δ(n) := ‖n‖ − 3 log3 n is less than a given threshold; these sets

we may call numbers with integer complexity close to the lower bound.

2.1.1 Main Results

The fundamental issue making the complexity of an integer a complicated quantity

are: (1) It assumes the same value for many integers, because it is logarithmically

small; (2) It is hard to determine lower bounds for a given value ‖n‖, since the

dynamic programming tree is exponentially large. The feature (1) implies there can

be many tie values in going down the tree, requiring a very large search, to determine

any specific complexity value.

21

We introduce a new invariant to study integer complexity.

Definition 2.1.4. The defect of a natural number n is given by

δ(n) = ‖n‖ − 3 log3 n

The introduction of the defect simplifies things in that it provides a more discrim-

inating invariant: we show that δ(n) ≥ 0 and that it separates integers into quite

small equivalence classes. In these equivalence classes powers of 3 play a special role.

The following result establishes a conjecture of Arias de Reyna [8, Conjecture 1].

Theorem 2.1.5. The following hold:

1. For a given value δ of the defect, the set S(δ) := {m : δ(m) = δ}, is a chain

{n · 3k : 0 ≤ k ≤ k(n)} where k(n) may be finite or infinite. The value n is

called the leader of the chain.

2. The function δ(n · 3k) is non-increasing on the sequence {n · 3k : k ≥ 0}. This

sequence has a finite number of leaders culminating in a largest leader n · 3L,

having the property that

||n · 3k|| = ||n · 3L||+ 3(k − L), for all k ≥ L.

The set of integers n · 3k for k ≥ L are termed stable integers, because their

representation using 1’s stabilizes into a predictable form for k ≥ L. This result is

proved in Section 2.2.1.

The main results of the chapter concern classifying integers having small values

of the defect. The defect is compatible with the multiplication aspect of the dynamic

programming definition of the integer complexity, but it does not fully respect the

addition aspect. The main method underlying the results of this chapter is given

in Theorem 2.4.4, which provides strong constraints on the dynamic programming

recursion for classifying numbers of small defect. It allows construction of sets of

integers including all integers of defect below a specified bound r, which may however

include some additional integers. The method contains adjustable parameters, and

with additional work they sometimes permit exact determination of these sets.

This main method has several applications. First, we use it to explictly classify

all integers of defect below the bound 12δ(2) ≈ 1.286. (Theorem 2.5.1). This requires

pruning the sets found using Theorem 2.4.4 to determine the sets below kδ(2) for

1 ≤ k ≤ 12.

22

Using this result we obtain an explicit classification of all integers having defect

at most 1, as follows.

Theorem 2.1.6. The numbers n satisfying 0 ≤ δ(n) < 1 are precisely those that can

be written in one of the following forms, and have the following complexities:

1. 3k for k ≥ 1, of complexity 3k

2. 2a3k for a ≤ 9, of complexity 2a+ 3k (for a, k not both zero)

3. 5 · 2a3k for a ≤ 3, of complexity 5 + 2a+ 3k

4. 7 · 2a3k for a ≤ 2, of complexity 6 + 2a+ 3k

5. 19 · 3k of complexity 9 + 3k

6. 13 · 3k of complexity 8 + 3k

7. (3n + 1)3k of complexity 1 + 3n+ 3k (for n 6= 0)

Furthermore n = 1 is the only number having defect exactly 1.

This result is established in Section 2.6.2. Using a slightly more general result,

which we present as Theorem 2.5.1, one can obtain a generalization of Rawsthorne’s

results, consisting of a description of all Er(k) for every finite r ≥ 0, valid for all

sufficiently large k, depending on r. This answer also depends on the congruence

class of k (mod 3). For example, one has

E2(3k) =
64

81
E(3k),

E2(3k + 1) =
5

6
E(3k + 1)

and

E2(3k + 2) =
5

6
E(3k + 2),

all holding for k ≥ 4. For E5(k) all three residue classes have different formulas, valid

for k ≥ 5. This generalization will be described elsewhere ([4]).

Secondly, the result can be used to obtain lower bounds on complexity of certain

integers, by showing they are excluded from sets containing all integers of complexity

at most r. This we use to prove Conjecture 2.1.3 for a ≤ 21.

23

Theorem 2.1.7. For all a and k with 0 ≤ a ≤ 21, k ≥ 0, and a+ k ≥ 1, there holds

‖2a3k‖ = 2a+ 3k.

This result is established in Section 2.6.3. It is possible to carry out computations

establishing the Conjecture 2.1.3 for some larger values of a, as we shall describe in

Chapter 5.

Thirdly, our main method can be used to estimate the magnitude of numbers

below x having a given defect.

Theorem 2.1.8. For any r > 0 the number Ar(x) of numbers n smaller than x which

have complexity δ(n) < r satisfies an upper bound, valid for all x ≥ 2,

Ar(x) ≤ Cr(log x)brc+1,

where Cr > 0 is an effectively computable constant depending on r.

This result is proved in Section 2.6.4. It implies that the set of possible defect

values is unbounded.

2.1.2 Discussion

We first remark on computing ‖n‖. The recursive definition permits computing ‖n‖
by dynamic programming, but it requires knowing {‖k‖ : 1 ≤ k ≤ n − 1}, so takes

exponential time in the input size of n measured in bits. In particular, a straight-

forward approach to computing ‖x‖ requires on the order of n2 steps. Srinivas and

Shankar [44] obtained an improvement on this, running in time O(nlog2 3).

We make some further remarks on Conjecture 2.1.3. Let’s specialize to k = 0 and

consider an analogous question for prime powers, concerning ‖pm‖ as m varies. It

is clear that ‖pm‖ ≤ m · ‖p‖, since we can concatenate by multiplication m copies

of a good representation of p. For which primes p is it true that ‖pm‖ = m‖p‖
holds for all m ≥ 1? This is verified for p = 3 by ‖3m‖ = 3m, and the truth of

Conjecture 2.1.3 requires that it hold for p = 2, with ‖2m‖ = 2m. However this

question has a negative answer for powers of 5. Here while ‖5‖ = 5, one instead gets

that ‖56‖ = ‖15625‖ = 29 < 6 · ‖5‖ = 30, as

15625 = 1 + (1 + 1)(1 + 1)(1 + 1)(1 + 1 + 1)(1 + 1 + 1) ·

(1 + (1 + 1)(1 + 1)(1 + 1)(1 + 1 + 1)(1 + 1 + 1)(1 + 1 + 1))

24

This encodes the identity 55 = 1 + 72 · 217, in which 72 = 23 · 32 and 217 = 1 + 23 · 33.

This counterexample for powers of 5 leaves open the possibility that there might exist

a (possibly far larger) counterexample for powers of 2, that has not yet been detected.

This discussion shows that Conjecture 2.1.3, if true, implies a kind of very strong

arithmetic independence of powers of 2 and powers of 3. This would represent an

important feature of the prime 2 in integer complexity. Conjecture 2.1.3 has impli-

cations about the number of nonzero digits in the expansion of 2n in base 3 as a

function of n; namely, if there existed a large power of 2 with a huge number of zero

digits in its base 3 expansion, then this would give a (counter)-example achieving

‖2k‖ < 2k. Problems similar to this very special subproblem already appear difficult

(see Lagarias [37]). A result of C. L. Stewart [45] yields a lower bound on the number

of nonzero digits appearing in the base 3 expansion of 2n, but it is tiny, being only

Ω(logn
log logn

).

The truth of ‖2n‖ = 2n would also immediately imply the lower bound

lim sup
n→∞

‖n‖
lnn
≥ 2

ln 2
.

Computer experiments seem to agree with this prediction and even allow the possi-

bility of equality, see Iraids et al [33].

There remain many interesting open questions concerning the classification of

integers given by the defect. The first concerns the distribution of stable and unstable

integers. How many are there of each kind? A second question concerns the function

M(n) that counts the number of distinct minimal decompositions into 1’s that a given

integer n has. How does this function behave?

Finally we remark that the set D := {δ(n) : n ≥ 1} of all defect values turns out

to be a highly structured set. In Chapter 3, we shall show that it is a well-ordered set,

of order type ωω, a fact related to some earlier conjectures of Juan Arias de Reyna

[8].

2.2 Properties of the defect

The defect is the fundamental tool in this thesis; let us begin by noting some of its

basic properties.

Proposition 2.2.1. The following hold:

1. For all integers a ≥ 1,

δ(a) ≥ 0.

25

Here equality holds precisely for a = 3k, k ≥ 1.

2. One has

δ(ab) ≤ δ(a) + δ(b),

and equality holds if and only if ‖ab‖ = ‖a‖+ ‖b‖.

3. For k ≥ 1,

δ(3k · n) ≤ δ(n)

and equality holds if and only if ‖3k · n‖ = 3k + ‖n‖.

Proof. (1) This follows from the result of Selfridge. Since for k ≥ 1, ‖3k‖ = 3k, we

have δ(3k) = 0 for k ≥ 1, while δ(1) = 1. For the converse, note that 3 log3 n is only

an integer if n is a power of 3.

(2) This is a direct consequence of the definition.

(3) This follows from (2), from noting that δ(3k) = 0 for k ≥ 1.

Because ‖3k‖ = 3k for k ≥ 1, one might hope that in general, ‖3n‖ = 3 + ‖n‖ for

n > 1. However, this is not so; for instance, ‖107‖ = 16, but ‖321‖ = 18.

The defect measures how far a given integer is from the upper bound E(||n||),
given in terms of the ratio E(‖n‖)/n:

Proposition 2.2.2. We have δ(1) = 1 and

δ(n) =


3 log3

E(‖n‖)
n

if ‖n‖ ≡ 0 (mod 3),

3 log3
E(‖n‖)
n

+ 2 δ(2) if ‖n‖ ≡ 1 (mod 3), with n > 1,

3 log3
E(‖n‖)
n

+ δ(2) if ‖n‖ ≡ 2 (mod 3).

In particular E(‖n‖)/n ≥ 1 for any n ≥ 1.

Proof. The proof is a straightforward computation using Selfridge’s formulas for E(k),

for k = 3j + i, i = 0, 1, 2.

2.2.1 Stable Integers

The example of ‖107‖ vs. ‖321‖ motivates the following definition.

Definition 2.2.3. A number m is called stable if ‖3k ·m‖ = 3k+‖m‖ holds for every

k ≥ 1. Otherwise it is called unstable.

We have the following criterion for stability.

26

Proposition 2.2.4. The number m is stable if and only if δ(3k ·m) = δ(m) for all

k ≥ 0.

Proof. This is immediate from Proposition 2.2.1(3).

These results already suffice to prove the following result, conjectured by Juan

Arias de Reyna [8].

Theorem 2.2.5. The following hold:

1. For any m ≥ 1, there exists a finite K ≥ 0 such that 3Km is stable.

2. If the defect δ(m) satisfies 0 ≤ δ(m) < 1, then m itself is stable.

Proof of Theorem 2.2.5. (1) From Proposition 2.2.1, we have that for any n, δ(3n) ≤
δ(n), with equality if and only if ‖3n‖ = ‖n‖ + 3. More generally, δ(3n) = δ(n) −
(‖n‖ + 3 − ‖3n‖), and so the difference δ(n) − δ(3n) is always an integer. This

means that the sequence δ(m), δ(3m), δ(9m), . . . is non-increasing, nonnegative, and

can only decrease in integral amounts; hence it must eventually stabilize. Applying

Proposition 2.2.4 proves the theorem.

(2) If δ(m) < 1, since all δ(n) ≥ 0 there is no room to remove any integral amount,

so m must be stable.

Note that while this proof shows that for any n there exists K such that 3Kn is

stable, it yields no upper bound on such a K. We will give a more constructive proof

and show how to compute such a K in Chapter 5.

The value of the defect separates the integers into small classes, whose members

differ only by powers of 3.

Proposition 2.2.6. Suppose that m and n are two positive integers, with m > n.

(1) If q := δ(n) − δ(m) is rational, then it is necessarily a nonnegative integer,

and furthermore m = n · 3k for some k ≥ 1.

(2) If δ(n) = δ(m) then m = n · 3k for some k ≥ 1 and furthermore

||n · 3j|| = 3j + ||n|| for 0 ≤ j ≤ k.

In particular δ(n) = δ(m) implies ‖n‖ ≡ ‖m‖ (mod 3).

Proof. (1) If q = δ(n) − δ(m) is rational, then k = log3(m/n) ∈ Q is rational; since

m/n is rational, the only way this can occur is if log3(m/n) is an integer k, in which

27

case, since m > n, m = n · 3k with k ≥ 1. It then follows from the definition of defect

that q = ‖n‖+ 3k − ‖m‖.
(2) By (1) we know that m = n · 3k for some k ≥ 1. By Proposition 2.2.1 (3)

we have δ(n · 3j) ≤ δ(n), for j ≥ 0 and it also gives δ(m) = δ(n · 3k) ≤ δ(n · 3j),
for 0 ≤ j ≤ k. Since δ(m) = δ(n) by hypothesis, this gives δ(n · 3j) = δ(n), so that

||n · 3j|| = 3j + ||n|| : 0 ≤ j ≤ k.

The results so far suffice to prove Theorem 2.1.5.

Proof of Theorem 2.1.5. (1) This follows from Proposition 2.2.6(2).

(2) The non-increasing assertion follows from Proposition 2.2.1(3). The finiteness

of the number of leaders in a sequence 3k · n follows from Theorem 2.2.5 (1).

2.2.2 Leaders

Again because ‖3n‖ is not always equal to 3 + ‖n‖, it makes sense to introduce the

following definition:

Definition 2.2.7. We call a natural number n a leader if it cannot be written most-

efficiently as 3m for some m; i.e., if either 3 - n, or, if 3 | n, then ‖n‖ < 3 + ‖n/3‖.

For example, 107 is a leader since 3 - 107, and 321 is also a leader since

‖321‖ = 18 < 3 + 16 = 3 + ‖107‖.

However, 963 is not a leader, as

‖963‖ = 21 = 3 + ‖321‖.

Leaders can be stable or unstable. In this example 107 is unstable, but by Theorem

2.2.5 some multiple 3K · 107 will be stable, and the smallest such multiple will be a

stable leader.

We have the following alternate characterization of leaders:

Proposition 2.2.8. The following hold:

1. A number n is a leader if and only if it is the smallest number having its given

defect value.

2. For any natural number m, there is a unique leader n ≤ m such that δ(n) =

δ(m). For it m = n · 3k for some k ≥ 0.

28

Proof. (1) If this were false, there would a leader n with some n′ < n with δ(n′) =

δ(n). By Proposition 2.2.6 (2) n = 3k · n′ with k ≥ 1 and ||n′ · 3j|| = 3j + ||n′|| for

0 ≤ j ≤ k. But then n/3 = n′ ·3k−1 is an integer and ||n/3|| = ||n′||+3k−3 = ||n||−3,

which contradicts n being a leader.

Conversely, if n is the first number of its defect and is divisible by 3, then we cannot

have ‖n‖ = ‖n/3‖ + 3, or else by Proposition 2.2.1 we would obtain δ(n) = δ(n/3),

contradicting minimality.

(2) Pick n to be the smallest number such that δ(n) = δ(m); this is the unique

leader satisfying δ(n) = δ(m). Then m = 3kn for some k ≥ 0 by Proposition 2.2.6.

To summarize, if δ occurs as a defect, then the set of integers

N(δ) := {m : δ(m) = δ},

having a given defect value δ has a smallest element that is a leader. If this leader n

is unstable, then

N(δ) = {3j · n : 0 ≤ j ≤ j(δ)}.

If this leader is stable, then N(δ) = {3j · n : j ≥ 0} is an infinite set. Furthermore if

3 - n then n is a leader, and there is a unique K = K(n) ≥ 0 such that n′ = 3Kn is a

stable leader.

2.3 Good factorizations and solid numbers

Given a natural number n > 1, by the dynamic programming definition of complexity

there are two numbers u and v, both smaller than n, such that either n = u · v and

‖n‖ = ‖u‖ + ‖v‖, or such that n = u + v and ‖n‖ = ‖u‖ + ‖v‖. In the case u and v

such that n = u+v, and ‖n‖ = ‖u‖+‖v‖ we say n is additively reducible. In the case

n = u · v and ‖n‖ = ‖u‖ + ‖v‖ we say n is multiplicatively reducible. Some numbers

n are reducible in both senses. For instance, 10 = 9 + 1 with ‖10‖ = ‖9‖+ ‖1‖, and

‖10‖ = 2 · 5 with ‖10‖ = ‖2‖+ ‖5‖.

2.3.1 Additive Irreducibility and Solid Numbers

We introduce terminology for numbers not being additively reducible.

Definition 2.3.1. We will say that a natural number n is additively irreducible if it

cannot be written most-efficiently as a sum, i.e., for all u and v such that n = u+ v,

we have ‖n‖ < ‖u‖+ ‖v‖. We call such values of n solid numbers.

29

The first few solid numbers are

{1, 6, 8, 9, 12, 14, 15, 16, 18, 20, 21, 24, 26, 27, . . .}

It can be shown that 3n is a solid number for n ≥ 2, and so there are infinitely many

solid numbers. Experimental evidence suggests that a positive fraction of integers

below x are solid numbers, as x→∞.

2.3.2 Multiplicative Irreducibility and Good Factorizations

We introduce further terminology for factorizations that respect complexity.

Definition 2.3.2. A factorization n = u1 · u2 · · ·uk is a good factorization of n if n

can be written most-efficiently as u1 · u2 · · ·uk, i.e., if the following equality holds:

‖n‖ = ‖u1‖+ ‖u2‖+ . . .+ ‖uk‖.

The factorization containing only one factor is automatically good; this will be called

a trivial good factorization.

Proposition 2.3.3. If n = n1·n2·. . .·nk is a good factorization then for any nonempty

subset I ⊂ {1, 2, . . . , k} the product m =
∏

j∈I nj is a good factorization of m.

Proof. If the factorization of m were not good, then we would have

‖m‖ <
∑
j∈I

‖nj‖

But then

‖n‖ =
∥∥∥m∏

j /∈I

nj

∥∥∥ <∑
j∈I

‖nj‖+
∑
j /∈I

‖nj‖ =
k∑
j=1

‖nj‖

and the given factorization of n would not be a good factorization.

Proposition 2.3.4. The following hold:

1. If n = n1 · n2 · ... · nk is a good factorization, and each ni = ni,1 · . . . · ni,li is a

good factorizations, then so is n =
∏k

i=1

∏li
j=1 ni,j.

2. If n = n1 · n2 · . . . · nk is a good factorization, and I1, I2, . . . , Il is a partition

of {1, . . . , k}, then letting mi =
∏

j∈Ii nj, we have that n =
∏l

i=1mi is a good

factorization.

30

Proof. (1) We have that ‖ni‖ =
∑li

j=1 ‖ni,j‖ and ‖n‖ =
∑k

i=1 ‖ni‖, so

‖n‖ =
k∑
i=1

li∑
j=1

‖ni,j‖

and we are done.

(2) This follows from Proposition 2.3.3 together with (1).

Definition 2.3.5. We will say that a natural number n is multiplicatively irreducible

(abbreviated m-irreducible) if n has no nontrivial good factorizations.

Proposition 2.3.4(2) shows n is m-irreducible if and only if all nontrivial fac-

torizations n = uv have ‖n‖ < ‖u‖ + ‖v‖. Thus a prime number p is automati-

cally m-irreducible since the only factorization is p = p · 1 and obviously we have

‖p‖ < ‖p‖+ 1 = ‖p‖+ ‖1‖. However, the converse does not hold. For instance, 46 is

a composite number which is m-irreducible.

Proposition 2.3.6. Any natural number has a good factorization into m-irreducibles.

Proof. We may apply induction and assume that any m < n has a factorization

into m-irreducibles. If n is m-irreducible, we are done. Otherwise, n has a good

factorization n = uv. Observe that n = n · 1 is never a good factorization, since

‖1‖ = 1; hence, u, v < n. Then the induction hypothesis implies that u and v have

good factorizations into m-irreducibles. Multiplying these factorizations together and

applying Proposition 2.3.4, we obtain a good factorization of n into m-irreducibles.

Good factorizations into m-irreducibles need not be unique. For 4838 = 2 · 41 · 59,

we find that 2 · (41 · 59), (2 · 59) · 41 and (2 · 41) · 59 are all good factorizations, but

the full factorization 2 · 41 · 59 is not a good factorization. (Thanks to Juan Arias de

Reyna for this example.) This is deducible from the following data:

‖2 · 41 · 59‖ = 27,

‖2‖ = 2, ‖41‖ = 12, ‖59‖ = 14.

‖2 · 41‖ = 13, ‖2 · 59‖ = 15, ‖41 · 59‖ = 25,

2.3.3 Good factorizations and leaders

The next two propositions show how the notion of good factorization interacts with

leaders and stability.

31

Proposition 2.3.7. Let n = n1 · n2 · · ·nr be a good factorization. If n is a leader

then each of the factors nj is a leader.

Proof. Suppose otherwise; without loss of generality, we may assume that n1 is not a

leader, so 3 | n1 and ‖n1‖ = 3 + ‖n1/3‖. So 3 | n and

‖n/3‖ = ‖(n1/3) · n2 · . . . · nr‖ ≤ ‖n1/3‖+
r∑
j=2

‖nj‖

= ‖n1‖ − 3 +
r∑
j=2

‖nj‖ = ‖n‖ − 3.

Since ‖n‖ ≤ 3 + ‖n/3‖, we have ‖n‖ = 3 + ‖n/3‖, and thus n is not a leader.

Proposition 2.3.8. Let n = n1 · n2 · · ·nr be a good factorization. If n is stable, then

each of its factors nj is stable.

Proof. Suppose otherwise. Without loss of generality, we may assume that n1 is

unstable; say ‖3kn1‖ < ‖n1‖+ 3k. So

‖3kn‖ = ‖(3kn1) · n2 · . . . · nr‖ ≤ ‖3kn1‖+
r∑
j=2

‖nj‖

< ‖n1‖+ 3k +
r∑
j=2

‖nj‖ = ‖n‖+ 3k.

and thus n is not stable.

Assembling all these results we deduce that being a leader and being stable are

both inherited properties for subfactorizations of good factorizations.

Proposition 2.3.9. Let n = n1 ·n2 · · ·nr be a good factorization, and I be a nonempty

subset of {1, . . . , r}; let m =
∏

i∈I ni. If n is a leader, then so is m. If n is stable,

then so is m.

Proof. This is immediate from Proposition 2.3.7, Proposition 2.3.8, and Proposi-

tion 2.3.4.(2).

2.4 The Classification Method

Here, we state and prove a result (Theorem 2.4.4) that will be our primary tool for the

rest of the chapter. By applying it repeatedly, for any r > 0, we can put restrictions

on what integers n can satisfy δ(n) < r.

32

Definition 2.4.1. (1) For any real r ≥ 0, define Ar to be {n ∈ N : δ(n) < r}.
(2) Define Br to be the set consisting of those elements of Ar that are leaders.

While Ar is our main object of interest, it turns out to be easier and more natural

to deal with Br. Note that knowing Br is enough to determine Ar, as expressed in

the following proposition:

Proposition 2.4.2.

Ar = {3kn : n ∈ Br, k ≥ 0}

Proof. If n ∈ Br, then δ(3kn) ≤ δ(n) < r, so 3kn ∈ Ar. Conversely, if m ∈ Ar, by

Proposition 2.2.8(2) we can take n ≥ 1 and k ≥ 0 such that n is a leader, m = 3kn,

and δ(m) = δ(n); then n ∈ Br and we are done.

We now let α > 0 be a real parameter, specifiable in advance. The main result

puts constraints on the allowable forms of the dynamic programming recursion (most

efficient representations) to compute integers in B(k+1)α in terms of integers in Bjα

for 1 ≤ j ≤ k. However there are some exceptional cases that must be considered

separately in the theorem; fortunately, for any α < 1, there are only finitely many.

We will collect these into a set we call Tα.

Definition 2.4.3. Define Tα to consist of 1 together with those m-irreducible numbers

n which satisfy
1

n− 1
> 3

1−α
3 − 1

and do not satisfy ‖n‖ = ‖n− b‖+ ‖b‖ for any solid numbers b with 1 < b ≤ n/2.

Observe that for 0 < α < 1, the above inequality is equivalent to

n < (3
1−α
3 − 1)−1 + 1

and hence Tα is a finite set. For α ≥ 1, the inequality is trivially satisfied and so

Tα = T1. We do not know whether T1 is a finite or an infinite set. However in our

computations we will always choose values 0 < α < 1.

We can now state the main classification result, which puts strong constraints on

the form of most-efficient decompositions of numbers in sets B(k+1)α.

Theorem 2.4.4. Suppose 0 < α < 1 and that k ≥ 1. Then any n ∈ B(k+1)α can be

most-efficiently represented in (at least) one of the following forms:

33

1. For k = 1, there is either a good factorization n = u · v where u, v ∈ Bα, or a

good factorization n = u · v · w with u, v, w ∈ Bα;

For k ≥ 2, there is a good factorization n = u · v where u ∈ Biα, v ∈ Bjα with

i+ j = k + 2 and 2 ≤ i, j ≤ k.

2. n = a+ b with b ≤ a and ‖n‖ = ‖a‖+ ‖b‖, where a ∈ Akα, b is a solid number

and

δ(a) + ‖b‖ < (k + 1)α + 3 log3 2.

3. There is a good factorization n = (a + b)v with v ∈ Bα and a and b satisfying

the conditions in the case (2) above.

4. n ∈ Tα, a finite set (and thus in particular either n = 1 or ‖n‖ = ‖n− 1‖+ 1.)

5. There is a good factorization n = u · v with u ∈ Tα and v ∈ Bα.

We will prove Theorem 2.4.4 in Section 2.4.2, after establishing a preliminary

combinatorial lemma in Section 2.4.1.

To apply Theorem 2.4.4, one recursively constructs from given sets B∗jα, A∗jα for

1 ≤ j ≤ k − 1 which contain Bjα, Ajα, respectively, the set of all n satisfying the

relaxed conditions (1)-(5) obtained replacing Bjα by B∗jα and Ajα by A∗jα. This new

set B∗∗(k+1)α contains the set B(k+1)α we want. Sometimes we can, by other methods,

prune some elements from B∗∗(k+1)α that do not belong to B(k+1)α, to obtain a new

approximation B∗(k+1)α. This then determines

A∗(k+1)α := {3kn : k ≥ 0, n ∈ B∗(k+1)α},

permitting continuation to the next level k + 2. We will present two applications of

this construction:

1. To get an upper bound on the cardinality of the set A(k+1)α(x) of numbers below

a given bound x with defect less than (k + 1)α.

2. To get a lower bound for the complexity ‖n‖ of a number n by showing it

does not belong to a given set A∗kα; this excludes it from Akα, whence ‖n‖ ≥
3 log3 n+ kα.

In some circumstances we can obtain the exact sets Bkα and Akα for 1 ≤ k ≤ k0,

i.e. we recursively construct B∗kα so that B∗kα = Bkα. This requires a perfect pruning

operation at each step. Here a good choice of the parameter α is helpful.

34

In applications we will typically not use the full strength of Theorem 2.4.4. Though

the representations it yields are most efficient, the proofs will typically not use this

fact. Also, in the addition case (2), the requirement that

δ(a) + ‖b‖ < (k + 1)α + 3 log3 2

implies the weaker requirement that just

‖b‖ < (k + 1)α + 3 log3 2.

The latter relaxed condition is easier to check, but it does enlarge the initial set

B∗∗(k+1)α to be pruned.

2.4.1 A Combinatorial Lemma

We establish a combinatorial lemma regarding decomposing a sum of real numbers

into blocks.

Lemma 2.4.5. Let x1, x2, . . . , xr > 0 be real numbers such that
∑r

i=1 xi < k + 1,

where k ≥ 1 is a natural number.

(1) If k ≥ 2 then either there is some i with xi ≥ k, or else we may find a partition

A ∪B of the set {1, 2, . . . , r} such that∑
i∈A

xi < k,
∑
i∈B

xi < k.

(2) If k = 1 then either there is some i with xi ≥ 1, or else we may find a partition

A ∪B ∪ C of the set {1, 2, . . . , r} such that∑
i∈A

xi < 1,
∑
i∈B

xi < 1,
∑
i∈C

xi < 1.

Proof. (1) Suppose k ≥ 2. Let us abbreviate
∑

i∈S xi by
∑
S. Among all partitions

A ∪ B of {1, . . . , r}, take one that minimizes |
∑
A −

∑
B|, with

∑
A ≥

∑
B.

Suppose that
∑
A ≥ k; then since

∑
A +

∑
B < k + 1, we have

∑
B < 1, and

so
∑
A −

∑
B > k − 1. So pick xi ∈ A and let A′ = A \ {i}, B′ = B ∪ {i}. If∑

A′ >
∑
B′, then

|
∑

A′ −
∑

B′| =
∑

A−
∑

B − 2xi <
∑

A−
∑

B,

35

contradicting minimality, so
∑
A′ ≤

∑
B′. So

∑
B′ −

∑
A′ ≥

∑
A−

∑
B, i.e.,

xi ≥
∑

A−
∑

B > k − 1.

Now i was an arbitrary element of A; this means that A can have at most one element,

since otherwise, if j 6= i ∈ A, we would have
∑
A ≥ xi + xj and hence

xj ≤
∑

A− xi ≤
∑

B < 1,

but also xj > k − 1, contradicting k ≥ 2. Thus A = {i} and so xi ≥ k.

(2) Here k = 1. Assume that x1 ≥ x2 ≥ · · · ≥ xr. If x1 ≥ 1 we are done.

Otherwise, if r ≤ 3, we can partition {1, . . . , r} into singletons.

For r ≥ 4, assume by induction the lemma is true for all sets of numbers with

strictly less than r elements. Let y = xr−1 + xr. We must have y < 1 because

otherwise xr−3 +xr−2 ≥ xr−1 +xr ≥ 1 and we get
∑r

i=1 xi ≥ 2 in contradiction to the

hypothesis. Hence, if we define x′1 = x1, . . . , x′r−2 = xr−2, x
′
r−1 = y, we have

r−1∑
i=1

x′i =
r∑
i=1

xi < 2,

and x′i < 1 for all i. By the inductive hypothesis, then, there exists a paritition

A′ ∪B′ ∪ C ′ = {1, . . . , r − 1}

with ∑
i∈A′

x′i < 1,
∑
i∈B′

x′i < 1,
∑
i∈C′

x′i < 1.

Replacing x′r−1 with xr−1 and xr, we get the required partition of {1, . . . , r}.

For k = 1 the example taking {x1, x2, x3} = {3/5, 3/5, 3/5} shows that a partition

into three sets is sometimes necessary.

2.4.2 Proof of the Classification Method

Proof of Theorem 2.4.4. Suppose n ∈ B(k+1)α; take a most-efficient representation of

n, which is either ab, a + b, or 1. If n = 1, then n ∈ Tα and we are in case (4). So

suppose n > 1.

If n is m-irreducible, we will pick a way of writing n = a+b with ‖n‖ = ‖a‖+‖b‖,
a ≥ b, and b is solid. There is necessarily a way to do this, since one way to do so is

36

to write n = a+ b with ‖n‖ = ‖a‖+‖b‖ and b minimal. Since this is possible, then, if

there is a way to choose a and b to have b > 1, do so; otherwise, we must pick b = 1.

In either case,

‖a‖+ ‖b‖ = ‖n‖ < 3 log3(a+ b) + (k + 1)α ≤ 3 log3(2a) + (k + 1)α,

so δ(a) + ‖b‖ < (k + 1)α + 3 log3 2.

If a ∈ Akα, we are in case (2). Otherwise, we have

3 log3 a+ kα + ‖b‖ ≤ ‖a‖+ ‖b‖ = ‖n‖ <

3 log3(a+ b) + (k + 1)α ≤ 3 log3(2a) + (k + 1)α,

so ‖b‖ < 3 log3 2 +α; since α < 1, we have ‖b‖ ≤ 2 and thus b ≤ 2. Because b is solid,

we have b = 1. By assumption, we only picked b = 1 if this choice was forced upon

us, so in this case, we must have that n does not satisfy

‖n‖ = ‖n− b‖+ ‖b‖

for any solid b with 1 < b ≤ n/2.

Since b = ‖b‖ = 1 we have 3 log3 a+kα+ 1 < 3 log3(a+ 1) + (k+ 1)α; since α < 1,

solving for a, we find that
1

n− 1
=

1

a
> 3

1−α
3 − 1.

Thus, n ∈ Tα and we are in case (4).

Now we consider the case when n is not m-irreducible. Choose a good factorization

of n into m-irreducible numbers, n =
∏r

i=1mi; since n is not m-irreducible, we have

r ≥ 2. Then we have
∑r

i=1 δ(mi) = δ(n) < (k + 1)α. Note that since we assumed

n is a leader, every product of a nonempty subset of the mi is also a leader by

Proposition 2.3.9. We now have two cases.

Case 1. k ≥ 2.

Now by Lemma 2.4.5(1), either there exists an i with δ(mi) ≥ kα, or else we can

partition the δ(mi) into two sets each with sum less than kα.

In the latter case, we may also assume these sets are nonempty, as if one is

empty, this implies that δ(n) < kα, and hence any partition of the δ(mi) will work;

since r ≥ 2, we can take both these sets to be nonempty. In this case, call the

products of these two sets u and v, so that n = uv is a good factorization of n. Then

δ(u) + δ(v) < (k+ 1)α, so if we let (i−1)α be the largest integral multiple of α which

37

is at most δ(u), then letting j = k + 2 − i, we have δ(v) < jα. So i + j = k + 2;

furthermore, since iα is the smallest integral multiple of α which is greater than δ(u),

and δ(u) < kα, we have i ≤ k, so j ≥ 2. If also i ≥ 2 then j ≤ k, and so we are in case

(1). If instead i = 1, then we have u ∈ Bα ⊆ B2α, and v ∈ Bkα (since δ(v) < kα), so

we are again in case (1) if we take i = 2 and j = k.

If such a partition is not possible, then let u be an mi with δ(mi) ≥ kα, and let

v be the product of the other mi, so that once again n = uv is a good factorization

of n. Since δ(u) + δ(v) = δ(n), we have δ(v) < α, and so v ∈ Bα. Finally, since u is

m-irreducible and an element of B(k+1)α, it satisfies the conditions of either case (2)

or case (4), and so n satisfies the conditions of either case (3) or case (5).

Case 2. k = 1.

Now by Lemma 2.4.5(2), either there exists an i with δ(mi) ≥ α, or else we can

partition the δ(mi) into three sets each with sum less than α.

In the latter case, we may also assume at least two of these sets are nonempty,

as otherwise δ(n) < α, and hence any partition of the δ(mi) will work. If there are

two nonempty sets, call the products of these two sets u and v, so that n = uv is a

good factorization of n. If there are three nonempty sets, call their products u, v, w,

so that n = uvw is a good factorization of n. Thus we are in case (1) for k = 1.

If such a partition is not possible, then we repeat the argument in Case 1 above,

determining that n satisfies one of the conditions of cases (3) or (5).

2.5 Determination of all elements of defect below a given
bound r

In this section we determine all elements of Ar for certain small r, using Theorem 2.4.4

together with a pruning operation.

2.5.1 Classification of numbers of small defect

We will now choose as our parameter

α := δ(2) = 2− 3 log3 2 ≈ 0.107.

The choice of this parameter is motivated by Theorem 2.5.2 below. We use above

method to inductively compute Akδ(2) and Bkδ(2) for 0 ≤ k ≤ 12. Numerically,

1.286 < 12δ(2) < 1.287. The following result classifies all integers in A12δ(2).

38

Theorem 2.5.1. (Classification Theorem) The numbers n satisfying δ(n) < 12δ(2)

are precisely those that can be written in at least one of the following forms, which

have the indicated complexities:

1. 3k of complexity 3k (for k ≥ 1)

2. 2a3k for a ≤ 11, of complexity 2a+ 3k (for a, k not both zero)

3. 5 · 2a3k for a ≤ 6, of complexity 5 + 2a+ 3k

4. 7 · 2a3k for a ≤ 5, of complexity 6 + 2a+ 3k

5. 19 · 2a3k for a ≤ 3, of complexity 9 + 2a+ 3k

6. 13 · 2a3k for a ≤ 2, of complexity 8 + 2a+ 3k

7. 2a(2b3l + 1)3k for a + b ≤ 2, of complexity 2(a + b) + 3(l + k) + 1 (for b, l not

both zero).

8. 1, of complexity 1

9. 55 · 2a3k for a ≤ 2, of complexity 12 + 2a+ 3k

10. 37 · 2a3k for a ≤ 1, of complexity 11 + 2a+ 3k

11. 25 · 3k of complexity 10 + 3k

12. 17 · 3k of complexity 9 + 3k

13. 73 · 3k of complexity 13 + 3k

In particular, all numbers n > 1 with δ(n) < 12δ(2) are stable.

This list is redundant; for example list (7) with a = 0, b = 1, l = 1 gives 7 · 3k,
which overlaps list (4) with a = 0. But the given form is convenient for later purposes.

In the next section we will give several applications of this result. They can be derived

knowing only the statement of this theorem, without its proof, though one will also

require Theorem 2.4.4.

The detailed proof of this theorem is given in the rest of this section. The proof

recursively determines all the sets Akδ(2) and Bkδ(2) for 1 ≤ k ≤ 12. It is possible to

extend this method to values kδ(2) with k > 12 but it is tedious. In Chapter 5, we

will present a method for automating these computations.

39

2.5.2 Base case

The use of δ(2) may initially seem like an odd choice of step size. Its significance

is shown by the following base case, which is proved using Rawsthorne’s result that

E1(k) ≤ (8/9)E(k) (with equality for k ≥ 8).

Theorem 2.5.2. If δ(n) 6= 0, then δ(n) ≥ δ(2). Equivalently, if n is not a power of

3, then δ(n) ≥ δ(2).

Proof. We apply Proposition 2.2.2. There are four cases.

Case 1. If n = 1, then δ(n) = 1 ≥ δ(2).

Case 2. If ‖n‖ ≡ 2 (mod 3), then

δ(n) = δ(2) + 3 log3

E(‖n‖)
n

≥ δ(2).

Case 3. If ‖n‖ ≡ 1 (mod 3) and n > 1, then

δ(n) = 2δ(2) + 3 log3

E(‖n‖)
n

≥ 2δ(2) ≥ δ(2).

Case 4. If ‖n‖ ≡ 0 (mod 3), then

δ(n) = 3 log3(E(‖n‖)/n).

We know that in this case n = E(‖n‖) if and only if n is a power of 3 if and only

if δ(n) = 0. So if δ(n) 6= 0, then n ≤ E1(‖n‖). But E1(‖n‖) ≤ (8/9)E(‖n‖), so

E(‖n‖)/n ≥ 9/8, so δ(n) ≥ 3 log3
9
8

= 3δ(2) ≥ δ(2).

The proof above also establishes:

Proposition 2.5.3. We have B0 = ∅, and Bδ(2) = {3}.

To prove Theorem 2.5.1 we will use Theorem 2.4.4 for the “inductive step”. How-

ever, while Theorem 2.4.4 allows us to place restrictions on what Ar can contain, if

we want to determine Ar itself, we need a way to certify membership in it. To certify

inclusion in Ar we need an upper bound on the defect, which translates to an upper

bound on complexity, which is relatively easy to do. However we also need to discard

n that do not belong to Ar, i.e. pruning the set we are starting with. This requires

establishing lower bounds on their defects, certifying they are r or larger, and for this

we need lower bounds on their complexities.

40

2.5.3 Two pruning lemmas

To find lower bounds on complexities, we typically use the following technique. Say

we want to show that ‖n‖ ≥ l (l ∈ N); since ‖n‖ is always an integer, it suffices to

show ‖n‖ > l − 1. We do this by using our current knowledge of Ar for various r;

by showing that if ‖n‖ ≤ l − 1 held, then it would put n in some Ar which we have

already determined and know it’s not in. The following two lemmas, both examples

of this principle, are useful for this purpose.

Lemma 2.5.4. If α ≤ 1/2, i+ j = k + 2, and a and b are natural numbers then

a ∈ Aiα, b ∈ Ajα, ab /∈ Akα =⇒ ‖ab‖ = ‖a‖+ ‖b‖.

Proof. Note

‖ab‖ ≥ 3 log3(ab) + kα = 3 log3 a+ 3 log3 b+ (i+ j − 2)α > ‖a‖+ ‖b‖ − 1

so ‖ab‖ ≥ ‖a‖+ ‖b‖.

Lemma 2.5.5. For natural numbers a, k, and m ≥ 0 we have

a ∈ Akα, 3m(a+ 1) /∈ Akα =⇒ ‖3m(a+ 1)‖ = ‖a‖+ 3m+ 1.

Proof. Note

‖3m(a+ 1)‖ ≥ 3 log3(a+ 1) + 3m+ kα > ‖a‖+ 3m

so ‖3m(a+ 1)‖ ≥ 3m+ ‖a‖+ 1.

In applying the lemmas to verify that a given n does not lie in a given Ar, one

must check that n is not in some other As. In our applications, we will have s < r, and

As will already be known, allowing the required check. In the following subsection

we will typically not indicate these checks explicitly, using the fact that in our cases

one can always check whether n ∈ As by looking at the base-3 expansion of n.

2.5.4 Proof of Theorem 2.5.1: Inductive Steps

We prove Theorem 2.5.1 by repeatedly applying Theorem 2.4.4, to go from k to k+ 1

for 0 ≤ k ≤ 12. We will use a step size α = δ(2), so let us first determine Tδ(2). We

compute that

3 < (3
1−δ(2)

3 − 1)−1 + 1 < 4,

41

and so Tδ(2) = {1, 2, 3}. We note that in all cases of attempting to determine B(k+1)α

we are considering, we will have (k + 1)α ≤ 12δ(2), and so if

‖b‖ < (k + 1)α + 3 log3 2,

then

‖b‖ < 12δ(2) + 3 log3 2 = 3.179 . . . ,

so ‖b‖ ≤ 3, which for b solid implies b = 1.

The base cases B0 = ∅ and Bδ(2) = {3} were handled in Proposition 2.5.3. We

now treat the Bkδ(2) in increasing order.

Proposition 2.5.6.

B2δ(2) = Bδ(2) ∪ {2},

and the elements of A2δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem,

B2δ(2) \Bδ(2) ⊆ {1, 2, 6, 9, 27} ∪

{3 · 3n + 1 : n ≥ 0} ∪ {3(3 · 3n + 1) : n ≥ 0}.

We can exclude 1 because δ(1) = 1, and we can exclude 6, 9, and 27 as they are

not leaders. For 3n+1 + 1, Lemma 2.5.5 shows ‖3n+1 + 1‖ = 3(n + 1) + 1, and thus

δ(3n+1 + 1) = 1− 3 log3(1 + 3−(n+1)), which allows us to check that none of these lie

in A2δ(2). We can exclude 3(3n+1 + 1) since Lemma 2.5.5 shows it has the same defect

as 3n+1 + 1 (and so therefore also is not a leader). Finally, checking the complexity

of 2 · 3k can be done with Lemma 2.5.4.

To make later computations easier, let us observe here that

δ(31 + 1) = δ(4) = 2δ(2),

6δ(2) < δ(32 + 1) = δ(10) < 7δ(2),

8δ(2) < δ(33 + 1) = δ(28) < 9δ(2),

and that for n ≥ 4,

9δ(2) < δ(3n + 1) < 10δ(2).

In the above, for illustration, we explicitly considered and excluded 3, 6, 9, 27,

and 3(3n+1 + 1), but henceforth we will simply not mention any multiplications by 3.

42

If n = 3a is a good factorization, n cannot be a leader (by definition), but if it is not

a good factorization, we can by Theorem 2.4.4 ignore it.

Proposition 2.5.7.

B3δ(2) = B2δ(2) ∪ {4},

and the elements of A3δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem,

B3δ(2) \B2δ(2) ⊆ {1, 4} ∪

{3 · 3n + 1 : n ≥ 0} ∪ {2 · 3n + 1 : n ≥ 0}.

Again, δ(1) = 1. By the above computation, the only number of the form 3n+1 + 1

occuring in A3δ(2) is 4. Lemma 2.5.5 shows that ‖2 · 3n + 1‖ = 3 + 3n for n > 0, and

hence δ(2 ·3n+1) = 3−3 log3(2+3−n), which allows us to check that none of these lie

in A3δ(2). Finally, checking the complexity of 4 ·3k can be done with Lemma 2.5.4.

To make later computations easier, let us observe here that

6δ(2) < δ(2 · 31 + 1) = δ(7) < 7δ(2),

8δ(2) < δ(2 · 32 + 1) = δ(19) < 9δ(2),

9δ(2) < δ(2 · 33 + 1) = δ(55) < 10δ(2),

and that for n ≥ 4,

10δ(2) < δ(2 · 3n + 1) < 11δ(2).

We will henceforth stop explicitly considering and then excluding 1, since we know

that 9δ(2) < δ(1) = 1 < 10δ(2).

Proposition 2.5.8.

B4δ(2) = B3δ(2) ∪ {8},

and the elements of A4δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem,

B4δ(2) \B3δ(2) ⊆ {8} ∪ {3 · 3n + 1 : n ≥ 0} ∪

{2 · 3n + 1 : n ≥ 0} ∪ {4 · 3n + 1 : n ≥ 0}.

43

By the above computation, no numbers of the form 3n+1 + 1 or 2 · 3n + 1 occur in

A4δ(2) \ A3δ(2). Lemma 2.5.5 shows ‖4 · 3n + 1‖ = 5 + 3n and hence

δ(4 · 3n + 1) = 5− 3 log3(4 + 3−n),

which allows us to check that none of these lie in A4δ(2). Finally, checking the com-

plexity of 8 · 3k can be done with Lemma 2.5.4.

To make later computations easier, let us observe here that

5δ(2) < δ(4 · 30 + 1) = δ(5) < 6δ(2),

9δ(2) < δ(4 · 31 + 1) = δ(13) < 10δ(2),

10δ(2) < δ(4 · 32 + 1) = δ(37) < 11δ(2),

and that for n ≥ 3,

11δ(2) < δ(4 · 3n + 1) < 12δ(2).

Proposition 2.5.9.

B5δ(2) = B4δ(2) ∪ {16},

and the elements of A5δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem,

B5δ(2) \B4δ(2) ⊆ {16} ∪ {3 · 3n + 1 : n ≥ 0} ∪ {2 · 3n + 1 : n ≥ 0} ∪

{4 · 3n + 1 : n ≥ 0} ∪ {8 · 3n + 1 : n ≥ 0}.

By the above computation, no numbers of the form 3n+1 + 1, 2 · 3n + 1, or 4 · 3n + 1

occur in A5δ(2) \ A4δ(2). Lemma 2.5.5 shows that ‖8 · 3n + 1‖ = 7 + 3n for n > 0,

and hence δ(8 · 3n + 1) = 7 − 3 log3(8 + 3−n), which allows us to check that none

of these lie in A5δ(2). Finally, checking the complexity of 16 · 3k can be done with

Lemma 2.5.4.

To make later computations easier, let us observe here that

11δ(2) < δ(8 · 31 + 1) = δ(25) < δ(8 · 32 + 1) = δ(73) < 12δ(2),

and that for n ≥ 3,

δ(8 · 3n + 1) > 12δ(2).

44

Proposition 2.5.10.

B6δ(2) = B5δ(2) ∪ {32, 5},

and the elements of A6δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem,

B6δ(2) \B5δ(2) ⊆ {32} ∪ {3 · 3n + 1 : n ≥ 0} ∪ {2 · 3n + 1 : n ≥ 0} ∪

{4 · 3n + 1 : n ≥ 0} ∪ {8 · 3n + 1 : n ≥ 0} ∪

{16 · 3n + 1 : n ≥ 0}.

By the above computations, the number of any of the forms 3n+1 + 1, 2 · 3n + 1,

4 · 3n + 1, or 8 · 3n + 1 occurring in A5δ(2) \A4δ(2) is 5 = 4 · 30 + 1. Lemma 2.5.5 shows

that ‖16 · 3n + 1‖ = 9 + 3n, and hence δ(16 · 3n + 1) = 9 − 3 log3(16 + 3−n), which

allows us to check that none of these lie in A6δ(2). Finally, checking the complexity of

32 · 3k can be done with Lemma 2.5.4, and checking the complexity of 5 · 3k can be

done with Lemma 2.5.5.

To make later computations easier, let us observe here that

11δ(2) < δ(16 · 30 + 1) = δ(17) < 12δ(2),

and that for n ≥ 1,

δ(16 · 3n + 1) > 12δ(2).

In the above, for illustration, we explicitly considered and excluded numbers of

the form 3 · 3n + 1, 2 · 3n + 1, etc., for large n, despite having already computed

their complexities earlier. Henceforth, to save space, we will simply not consider a

number if we have already computed its defect and seen it to be too high. E.g., in

the above proof, we would have simply said, “By the main theorem and the above

computations, B6δ(2) \B5δ(2) ⊆ {32, 5} ∪ {8 · 3n + 1 : n ≥ 0}”.

Proposition 2.5.11.

B7δ(2) = B6δ(2) ∪ {64, 7, 10},

and the elements of A7δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem and the above computations,

B7δ(2) \B6δ(2) ⊆ {64, 7, 10} ∪ {32 · 3n + 1 : n ≥ 0} ∪ {5 · 3n + 1 : n ≥ 0}.

45

Lemma 2.5.5 shows that ‖32 · 3n + 1‖ = 11 + 3n and, for n ≥ 2, ‖5 · 3n + 1‖ = 6 + 3n.

Hence δ(32 ·3n+1) = 11−3 log3(32+3−n), and, for n ≥ 2, δ(5 ·3n+1) = 6−3 log3(5+

3−n) which allows us to check that none of these lie in A7δ(2). Finally, checking the

complexities of 64 · 3k, 7 · 3k, and 10 · 3k can be done via Lemma 2.5.4 (for 64 and 10)

and Lemma 2.5.5 (for 7 and 10).

To make later computations easier, let us observe here that

δ(32 · 3n + 1) > 12δ(2) for all n,

and that for n ≥ 2,

δ(5 · 3n + 1) > 12δ(2)

as well. Indeed, as we will see, from this point on, no new examples of multiplying

by a power of 3 and then adding 1 will ever have complexity less than 12δ(2).

Proposition 2.5.12.

B8δ(2) = B7δ(2) ∪ {128, 14, 20},

and the elements of A8δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem and the above computations,

B8δ(2) \B7δ(2) ⊆ {128, 14, 20} ∪ {64 · 3n + 1 : n ≥ 0} ∪

{7 · 3n + 1 : n ≥ 0} ∪ {10 · 3n + 1 : n ≥ 0}.

Lemma 2.5.5 shows that ‖64 · 3n + 1‖ = 13 + 3n, ‖10 · 3n + 1‖ = 8 + 3n, and, for

n 6= 0, 2, ‖7 · 3n + 1‖ = 7 + 3n. Using this to check their defects, we see that none

of these lie in A8δ(2), or even A12δ(2). Finally, checking the complexities of 128 · 3k,
14 · 3k, and 20 · 3k can be done with Lemma 2.5.4.

Proposition 2.5.13.

B9δ(2) = B8δ(2) ∪ {256, 28, 40, 19},

and the elements of A9δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem and the above computations,

B9δ(2) \B8δ(2) ⊆ {256, 28, 40, 19} ∪ {128 · 3n + 1 : n ≥ 0} ∪

{14 · 3n + 1 : n ≥ 0} ∪ {20 · 3n + 1 : n ≥ 0}.

46

Lemma 2.5.5 shows that ‖128 ·3n+1‖ = 15+3n, and for n ≥ 1, ‖14 ·3n+1‖ = 9+3n

and ‖20 · 3n + 1‖ = 10 + 3n. Using this to check their defects, we see that none

of these lie in A8δ(2), or even A12δ(2). Finally, checking the complexities of 256 · 3k,
28 · 3k, and 40 · 3k, and 19 · 3k can be done via Lemma 2.5.4 (for 256, 28, and 40) and

Lemma 2.5.5 (for 28 and 19).

Proposition 2.5.14.

B10δ(2) = B9δ(2) ∪ {512, 13, 1, 56, 80, 55, 38} ∪ {3 · 3n + 1 : n ≥ 3},

and the elements of A10δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem and the above computations,

B10δ(2) \B9δ(2) ⊆ {512, 13, 1, 56, 80, 55, 38} ∪ {3 · 3n + 1 : n ≥ 3} ∪

{256 · 3n + 1 : n ≥ 0} ∪ {28 · 3n + 1 : n ≥ 0} ∪

{40 · 3n + 1 : n ≥ 0} ∪ {19 · 3n + 1 : n ≥ 0}.

We know δ(1) = 1. Lemma 2.5.5 shows that ‖256 · 3n + 1‖ = 17 + 3n, ‖28 · 3n + 1‖ =

11 + 3n, ‖40 · 3n + 1‖ = 12 + 3n, and for n ≥ 1, ‖19 · 3n + 1‖ = 10 + 3n. Using

this to check their defects, we see that none of these lie in A10δ(2), or even A12δ(2).

Finally, checking the complexities of 512 · 3k, 13 · 3k, 56 · 3k, 80 · 3k, 55 · 3k, 38 · 3k, and

(3n+1 + 1)3k can be done via Lemma 2.5.4 (for 512, 56, 80, and 38) and Lemma 2.5.5

(for 13, 55 and 3n+1 + 1).

Proposition 2.5.15. We have

B11δ(2) = B10δ(2) ∪ {1024, 26, 112, 37, 160, 110, 76} ∪

{2(3 · 3n + 1) : n ≥ 3} ∪ {2 · 3n + 1 : n ≥ 4},

and the elements of A11δ(2) have the complexities listed in Theorem 2.5.1.

47

Proof. By the main theorem and the above computations,

B11δ(2) \B10δ(2) ⊆ {1024, 26, 112, 37, 160, 110, 76, 25} ∪

{2(3 · 3n + 1) : n ≥ 3} ∪ {2 · 3n + 1 : n ≥ 4} ∪

{512 · 3n + 1 : n ≥ 0} ∪ {13 · 3n + 1 : n ≥ 0} ∪

{56 · 3n + 1 : n ≥ 0} ∪ {80 · 3n + 1 : n ≥ 0} ∪

{55 · 3n + 1 : n ≥ 0} ∪ {38 · 3n + 1 : n ≥ 0} ∪

{(3 · 3n + 1)3m + 1 : n ≥ 3,m ≥ 0}

Lemma 2.5.5 shows that for m ≥ 3, ‖(3m+1 + 1)3n + 1‖ = 2 + 3(m+ 1) + 3n, and that

for n ≥ 1, ‖512 · 3n + 1‖ = 19 + 3n, ‖56 · 3n + 1‖ = 13 + 3n, ‖80 · 3n + 1‖ = 14 + 3n,

‖55·3n+1‖ = 13+3n, ‖38·3n+1‖ = 12+3n, and that for n ≥ 2, ‖13·3n+1‖ = 9+3n.

Using this to check their defects, we see that none of these lie in A11δ(2), or even A12δ(2).

We checked earlier that δ(25) > 11δ(2). Finally, checking the complexities of 1024·3k,
26 · 3k, 112 · 3k, 37 · 3k, 160 · 3k, 110 · 3k, 76 · 3k, 2(3n+1 + 1)3k, and (2 · 3n + 1)3k

can be done via Lemma 2.5.4 (for 1024, 26, 112, 160, 110, 76, and 2(3n+1 + 1)) and

Lemma 2.5.5 (for 37 and 2 · 3n + 1).

Proposition 2.5.16.

B12δ(2) = B11δ(2) ∪ {2048, 25, 52, 224, 74, 320, 17, 220, 152, 73} ∪

{4(3 · 3n + 1) : n ≥ 3} ∪ {2(2 · 3n + 1) : n ≥ 4} ∪

{4 · 3n + 1 : n ≥ 3}

and the elements of A12δ(2) have the complexities listed in Theorem 2.5.1.

Proof. By the main theorem and the above computations,

B12δ(2) \B11δ(2) ⊆ {2048, 25, 52, 224, 74, 320, 17, 220, 152, 73, 35} ∪

{4(3 · 3n + 1) : n ≥ 3} ∪ {2(2 · 3n + 1) : n ≥ 4} ∪

{4 · 3n + 1 : n ≥ 3} ∪ {1024 · 3n + 1 : n ≥ 0} ∪

{26 · 3n + 1 : n ≥ 0} ∪ {112 · 3n + 1 : n ≥ 0} ∪

{37 · 3n + 1 : n ≥ 0} ∪ {160 · 3n + 1 : n ≥ 0} ∪

{110 · 3n + 1 : n ≥ 0} ∪ {76 · 3n + 1 : n ≥ 0} ∪

{2(3 · 3n + 1)3m + 1 : n ≥ 3,m ≥ 0} ∪

{(2 · 3n + 1)3m + 1 : n ≥ 4,m ≥ 0}

48

Lemma 2.5.5 shows that for m ≥ 3 and n ≥ 1,

‖2(3m+1 + 1)3n + 1‖ = 4 + 3(m+ 1) + 3n,

that for m ≥ 4 and n ≥ 1,

‖(2 · 3m + 1)3n + 1‖ = 4 + 3m+ 3n,

and that

‖1024 · 3n + 1‖ = 21 + 3n, ‖112 · 3n + 1‖ = 15 + 3n,

‖160 · 3n + 1‖ = 16 + 3n, ‖76 · 3n + 1‖ = 14 + 3n,

and that for n ≥ 1,

‖26 · 3n + 1‖ = 11 + 3n, ‖110 · 3n + 1‖ = 15 + 3n

, and that for n ≥ 2,

‖37 · 3n + 1‖ = 12 + 3n.

Using this to check their defects, we see that none of these lie in A12δ(2). We can then

check that δ(35) > 12δ(2). Finally, checking the complexities of 2048 · 3k, 25 · 3k,
52 · 3k, 224 · 3k, 74 · 3k, 320 · 3k, 220 · 3k, 152 · 3k, 73 · 3k, 4(3n+1 + 1)3k, 2(2 · 3n + 1)3k,

and (4 · 3n + 1)3k can be done via Lemma 2.5.4 (for 2048, 25, 52, 224, 74, 320, 220,

152, 4(3n+1 +1), and 2(2 ·3n+1)) and Lemma 2.5.5 (for 25, 17, 73, and 4 ·3n+1).

Combining all these propositions establishes Theorem 2.5.1.

2.6 Applications

We now present several applications of the classification obtained in Section 2.5.

These are: (i) Stability of numbers n > 1 of defect less than 12δ(2) + 1; (ii) Classifi-

cation of all integers n having defect 0 ≤ δ(n) ≤ 1 and finiteness of Br for all r < 1;

(iii) Determination of complexities ‖2a · 3k‖ for a ≤ 21 and all k; (iv) Upper bounds

on the number of integers n ≤ x having complexity δ(n) < r, for any fixed r > 0.

2.6.1 Stability of numbers of low defect

We have already noted in Theorem 2.5.1 that numbers n > 1 of defect less than

12δ(2) are stable. In fact, we can conclude something stronger.

49

Theorem 2.6.1. If n > 1 and δ(n) < 12δ(2) + 1 = 2.2865 . . ., then n is stable.

Proof. From Theorem 2.5.1, we can check that if δ(3n) < 12δ(2), then

δ(n) < 12δ(2).

So suppose the theorem were false, and we have unstable n > 1 with

δ(n) < 12δ(2) + 1.

Then for some K, δ(3Kn) ≤ δ(n)− 1 < 12δ(2). So by above, we have δ(n) < 12δ(2),

and thus, as noted in Theorem 2.5.1, n is stable unless n = 1.

In fact, if n > 1 and δ(n) < δ(107) = 3.2398 . . ., then n is stable, as we will prove

in Chapter 5.

2.6.2 Classifying the integers of defect at most 1

Using Theorem 2.5.1 we can classify all the numbers with defect less than 1, as follows:

Theorem 2.6.2. The natural numbers n satisfying δ(n) < 1 are precisely those that

can be written in one of the following forms, and have the following complexities:

1. 3k for k ≥ 1, of complexity 3k

2. 2a3k for a ≤ 9, of complexity 2a+ 3k (for a, k not both zero)

3. 5 · 2a3k for a ≤ 3, of complexity 5 + 2a+ 3k

4. 7 · 2a3k for a ≤ 2, of complexity 6 + 2a+ 3k

5. 19 · 3k of complexity 9 + 3k

6. 13 · 3k of complexity 8 + 3k

7. (3n + 1)3k of complexity 1 + 3n+ 3k (for n 6= 0)

Furthermore n = 1 is the only number having defect exactly 1.

Proof. This list includes all numbers in A9δ(2), and some numbers in A10δ(2). These

in turn are determined by the corresponding lists for B9δ(2), B10δ(2), in the latter case

(Proposition 2.5.14) checking the complexities to exclude the leaders {56, 80, 55, 38}.

50

Using this list one may deduce the following important fact.

Theorem 2.6.3. For every α ∈ (0, 1), the set of leaders Bα is a finite set. For every

α ≥ 1, the set Bα is an infinite set.

Proof. The first part follows from the fact that each of the categories above has a

finite set of leaders, and that the final list (7) has a finite number of sublists with

defect smaller than 1− ε, for any epsilon. The defects

δ((3n + 1)3k) = (3n+ 1)− 3 log3(3
n + 1) = 1− 3 log3(1 +

1

3n
)

approach 1 from below as n approaches infinity. This also establishes that B1 is an

infinite set, giving the second part.

2.6.3 The complexity of 2m3k for small m

The determination of Ar in Theorem 2.5.1 allows us to put lower bounds on the

complexities of any numbers not in it. Thus for instance we have the following result.

Lemma 2.6.4. Let n be a natural number and suppose that there is no k such that

2n+93k ∈ Anδ(2). Then for any m ≤ n + 9 and any k (with m and k not both zero),

‖2m3k‖ = 2m+ 3k.

Proof. It suffices to show that ‖2n+93k‖ > 2n+ 3k + 17, but by assumption,

‖2n+93k‖ ≥ (n+ 9)3 log3 2 + 3k + nδ(2) = 2n+ 3k + 27 log3 2 > 2n+ 3k + 17,

and we are done.

This lemma immediately establishes Conjecture 2.1.3 for a ≤ 21.

Proof of Theorem 2.1.7. From our classification, it is straightforward to check that

2213k does not lie in A12δ(2) for any k, so we can conclude that for m ≤ 21 and any k,

with m and k not both zero, ‖2m3k‖ = 2m+ 3k.

2.6.4 Counting the integers below x having defect at most r

In our computations in Section 2.5, we used a small step size α = δ(2), and kept our

superset of Ar small by using a pruning step. In what follows, we will use a different

trick to keep our supersets of Ar from getting too large. Instead of pruning, we will

use step sizes arbitrarily close to 1.

51

Proposition 2.6.5. Given any α ∈ (0, 1) and any k ≥ 1, we have that

Bkα(x) = Okα((log x)k−1) and Akα(x) = Okα((log x)k),

where S(x) denotes the number of elements of S that are less than x.

Proof. We induct on k. Suppose k = 1; by Corollary 2.6.3, then Bkα = Bα is a

finite set, so Bkα(x) = Okα(1). Also, for any r, Ar(x) ≤ Br(x)(log3 x); in particular,

Akα(x) = Okα(log x).

So suppose it is true for k and we want to prove it for k + 1; we apply Proposi-

tion 2.4.4 with step size α. For convenience, let Sr denote the set of solid numbers b

satisfying ‖b‖ < r + 3 log3 2, as mentioned in the discussion after Theorem 2.4.4; for

any r, this is a finite set.

In the case k + 1 = 2,

B2α(x) ≤ Bα(x)3 + (Aα(x)|S2α|+ |Tα|)(|Bα|+ 1)

= Oα(1)3 +Oα(log x) +Oα(1)

= O(k+1)α(log x).

In the case k + 1 > 2,

B(k+1)α(x) ≤
∑

i+j=k+2
i,j≥2

Biα(x)Bjα(x) + (Akα(x)|S(k+1)α|+ |Tα|)(|Bα|+ 1)

=
∑

i+j=k+2
i,j≥2

Oiα((log x)i−1)Ojα((log x)j−1) +O(k+1)α((log x)k) +Oα(1)

= Okα((log x)k).

In either case, we also have A(k+1)α(x) = O(k+1)α((log x)k+1). This completes the

proof.

Using this result we conclude:

Theorem 2.6.6. For any number r > 0,

Br(x) = Θr((log x)brc) and Ar(x) = Θr((log x)brc+1).

Proof. For the upper bound, it suffices to note that r = (brc + 1) r
brc+1

, and that
r

brc+1
< 1, and apply Proposition 2.6.5.

52

For the lower bound, let k = brc, and consider numbers of the form

N = ((· · · ((3 · 3nk + 1)3nk−1 + 1) · · ·)3n1 + 1)3n0 .

Then

‖N‖ ≤ 3(n0 + · · ·+ nk + 1) + k

and since log3N ≥ n0 + · · · + nk + 1, this means δ(N) ≤ k. Furthermore, if n0 = 0

and n1 > 0 then N is not divisible by 3 and so is a leader. It is then easy to count

that there are at least (
blog3 xc
k + 1

)
&

1

(k + 1)!
(log3 x)k+1

such N less than a given x, and at least(
blog3 xc

k

)
&

1

k!
(log3 x)k

if we insist that N be a leader.

An immediate consequence of Theorem 2.6.6 is Theorem 2.1.8 in the introduction.

Proof of Theorem 2.1.8. The existence of numbers of arbitrarily large defect follows

from the fact that the set of integers of defect < r has density zero.

This result is a long way from proving a bound of the type ‖n‖ � 3 log3 n.

53

Chapter 3

Integer Complexity and Well-Ordering

Abstract: Define ‖n‖ to be the complexity of n, the smallest number of ones

needed to write n using an arbitrary combination of addition and multiplication.

John Selfridge showed that ‖n‖ ≥ 3 log3 n for all n. Define the defect of n,

denoted δ(n), to be ‖n‖ − 3 log3 n. In this chapter, we consider the set D :=

{δ(n) : n ≥ 1} of all defects. We show that as a subset of the real numbers, the

set D is well-ordered, of order type ωω. More specifically, for k ≥ 1 an integer,

D ∩ [0, k) has order type ωk. We also consider some other sets related to D ,

and show that these too are well-ordered and have order type ωω.

3.1 Introduction

The complexity of a natural number n is the least number of 1’s needed to write it

using any combination of addition and multiplication, with the order of the operations

specified using parentheses grouped in any legal nesting. For instance, n = 11 has a

complexity of 8, since it can be written using 8 ones as (1+1+1)(1+1+1)+1+1, but

not with any fewer. This notion was implicitly introduced in 1953 by Kurt Mahler

and Jan Popken [38]; they actually considered the inverse function of the size of

the largest number representable using k copies of the number 1. (More generally,

they considered the same question for representations using k copies of a positive real

number x.) Integer complexity was explicitly studied by John Selfridge, and was later

popularized by Richard Guy [29, 30]. Following J. Arias de Reyna [8] we will denote

the complexity of n by ‖n‖.
Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n =
3

ln 3
lnn ≤ ‖n‖ ≤ 3

ln 2
lnn, n > 1. (3.1)

The lower bound can be deduced from the result of Mahler and Popken, and was

explicitly proved by John Selfridge [29]. It is attained with equality for n = 3k for

54

all k ≥ 1. The upper bound can be obtained by writing n in binary and finding a

representation using Horner’s algorithm. It is not sharp, and the constant 3
ln 2

can be

improved for large n [52].

The notion of integer complexity is similar in spirit but different in detail from the

better known measure of addition chain length, which has application to computation

of powers, and which is discussed in detail in Knuth [35, Sect. 4.6.3]. One important

difference between the two notions is that integer complexity can be computed by

dynamic programming, while this does not seem to be the case for addition chain

length. Specifically, integer complexity is computable via the dynamic programming

recursion, for any n > 1,

‖n‖ = min
a,b<n∈N

a+b=n or ab=n

‖a‖+ ‖b‖.

There are many mysteries about ‖n‖. For powers one has

‖nk‖ ≤ k‖n‖

and it is known that ‖3k‖ = 3k for all k ≥ 1. However other values have a more

complicated behavior. For instance, powers of 5 do not work nicely, as ‖56‖ = 29 <

30 = 6‖5‖. The behavior of powers of 2 remains unknown; it has been verified that

‖2k‖ = k‖2‖ = 2k for 1 ≤ k ≤ 39;

see [33].

3.1.1 Main Result

In Chapter 2, we introduced the notion the defect of an integer n, denoted δ(n), by

δ(n) := ‖n‖ − 3 log3 n.

This is a rescaled version of integer complexity, which, given n, contains equivalent

information to ||n||. In view of the lower bound 3.1 above it satisfies δ(n) ≥ 0. Chap-

ter 2 exploited patterns in the dynamic programming structure of integer complexity

to classify the structure of all integers with small values of the defect. In particular

it classifies all integers with δ(n) ≤ 1.

The defect encodes interesting structure about integer complexity. In this chapter,

we will consider the image of this defect function in the general case:

55

Definition 3.1.1. The defect set D ⊆ [0,∞) is the set of all defect values {δ(n) :

n ∈ N}.

Addition and multiplication tend to interact badly and unpredictably when placed

on an equal footing. So one might not expect to find any particular sort of structure

in the values of δ(n), even though its definition is based on powers of 3 which give

the extremal case. In this chapter we will prove the following striking result:

Theorem 3.1.2. The set D is a well-ordered subset of R, of order type ωω. Further-

more, for k ≥ 1 an integer, the set D ∩ [0, k) has order type ωk.

This well-ordering of the defect set D reveals new fundamental structure in the

interaction between addition and multiplication. Some of the tangledness of that

interaction may be reflected in how the set D grows more complicated as its elements

get larger. In fact the structure of D has even more regularity than what Theorem

3.1.2 describes, which we plan to discuss in a future paper[6].

In Section 3.7, we will also prove that Theorem 3.1.2 still holds even if we replace

D with any of several other closely-related sets.

Theorem 3.1.2 is closely related to conjectures of J. Arias de Reyna [8] about

integer complexity. We discuss these conjectures and use our results to prove modified

versions of some of them in Appendix A.

In contrast to Theorem 3.1.2, little is known about the set of values of ‖n‖
3 log3 n

, even

though that might appear to be a more natural object of study. An open question is

to determine the value

Cmax := lim sup
n→∞

‖n‖
3 log3 n

.

The bounds 3.1 imply 1 ≤ Cmax ≤ log2 3. It is an open problem to decide whether

Cmax = 1 or Cmax > 1 holds.

3.1.2 Low-Defect Polynomials

The strategy to prove the main theorem is to build up the set D by inductively

building up the sets D ∩ [0, s) for real numbers s > 0. The proof of Theorem 3.1.2

makes use of the methods of Chapter 2 classifying numbers of low defect. Chapter 2

gave a method to list families of such integers, and explicitly listed all integers of

defect δ(n) < 1. The innovation made here is that instead of treating the output of

this method as an undifferentiated blob, we group it into tractable families.

We introduce a family of multilinear polynomials that we call low-defect polynomi-

als. We show that for any s > 0, there exists a finite set of low-defect polynomials Ss

56

such that any number of defect less than s can be written as f(3n1 , . . . , 3nk)3nk+1 for

some f ∈ Ss and nonnegative n1, . . . , nk+1. Indeed, stronger statements are true; see

Theorem 3.4.10 and Theorem 3.4.15. Note, however, that the low-defect polynomials

may also produce extraneous numbers, with defect higher than intended; examples of

these are given after Theorem 3.4.10. We will remedy this deficiency in Chapter 5.

To state this another way, these low-defect polynomials provide forms into which

powers of 3 can be substituted to obtain all the numbers below the specified defect.

As the defects get larger, the low-defect polynomials and the families of numbers we

get this way become more complicated. And just as we can visualize expressions in

+, ×, and 1 as trees, we can also visualize low-defect polynomials – or the expressions

that generate them – as trees, with open slots where powers of 3 can be plugged in. By

attaching trees corresponding to powers of 3, we obtain trees for the numbers we get

this way. This is illustrated in Figure 3.1 with the polynomial (2x1 + 1)x2 + 1. (Note,

however, that this picture is not quite correct when we plug in 30; see Figure 3.2 in

section 3.4).

Figure 3.1: A tree corresponding to the polynomial (2x1 + 1)x2 + 1, and the same
tree after making the substitution x1 = 31, x2 = 32.

+
b
b

"
"
×
b
b

"
"

+
Q
Q

�
�
×
cc##

+
SS��

1 1

x1

1

x2

1

+
XXXXXX

������
×
XXXXX
�����

+
aaa
!!!

×
H
HH

�
��

+
SS��

1 1

+
ll,,

+
SS��

1 1

1

1

×
aaa
!!!

+
ll,,

+
SS��

1 1

1

+
ll,,

+
SS��

1 1

1

1

So with this approach, we can get at properties of the set of defects by examining

properties of low-defect polynomials. For instance, as mentioned above, as the defects

involved get larger, the low-defect polynomials required get more complicated; one

way in which this occurs is that they require more variables. In fact, we will see

(Theorem 3.4.10) that to cover defects up to a real number s, one needs low-defect

polynomials with up to bsc variables. And it happens that if we have a low-defect

polynomial f in k variables, and consider the numbers f(3n1 , . . . , 3nk), then the defects

57

of the numbers obtained this way form a well-ordered set of order type at least ωk

and less than ωk+1 (Proposition 3.6.3). It is this that leads us to Theorem 3.1.2, that

for k ≥ 1, the set D ∩ [0, k) has order type precisely ωk. In future papers we will

draw more detailed conclusions by examining the structure of low-defect polynomials

more closely.

3.1.3 Variant Results

We also prove analogues of the main theorem for several other sets. Chapter 2 showed

that given the value of δ(n), one can determine the value of ‖n‖ modulo 3; see

Theorem 3.2.1(6) below. It follows that one can split the set of defects D into sets

D0, D1, and D2 according to these congruence classes modulo 3; see Definition 3.2.4.

In Section 3.7 we prove analogues of the main theorem for each set Da separately;

see Theorem 3.7.4.

Chapter 2 also introduced a notion of stable numbers; a number n is said to be

stable if ‖3kn‖ = 3k + ‖n‖ for all k ≥ 0; equivalently, if δ(3kn) = δ(n) for all k ≥ 0.

In Section 3.3 we show that given δ(n), one can determine whether or not a given

number n is stable, and thus we can consider the set of “stable defects”, Dst, which

are the defect values for all stable numbers.

We can combine this notion with splitting based on the value of ‖n‖ modulo 3 to

define sets D0
st, D1

st, and D2
st. In Section 3.7 we prove each of these sets is well-ordered

of type ωω, as are the closures of all these sets. All these well-ordering results are

collected in Theorem 3.7.4.

3.1.4 Computability Questions

Integer complexity captures part of the complicated interaction of addition and mul-

tiplication, where subtraction is not allowed; the underlying algebraic structure is

that of a commutative semiring (N,+,×). It is a very simple computational model,

but already exhibits difficult issues.

The model of computation treated in this thesis could be considered as taking

number inputs other than 1. Mahler and Popken [38] considered constructing numbers

starting with copies of any fixed positive real number x. Note that as x varies the

ordering of computed quantities on the positive real line will change. One feature

of complexity for x = 1 (or for x = k, an integer) is that multiple ties can occur

in doing the computations, which complicates determination of the structure of the

minimal computation tree. For a generic (transcendental) x, the complexity issue

58

simplifies to viewing the computation tree as computing a univariate polynomial with

positive integer coefficients, having a zero constant term. One can assign a complexity

to the problem of computing such polynomials. Study of this simplified problem

might be fruitful. Allowing multiple indeterminates as inputs, we can consider the

complexity of computing multivariate polynomials, which is a much-studied topic.

The model of computation allowing + and × above can compute all multivariate

polynomials with nonnegative integer coefficients, but is restricted in that it does not

allow free reuse of polynomials already constructed. The complexity of computation

in this restricted model can be compared to that in other computational models which

allow additional operations beyond addition and multiplication, or allow free reuse

of already computed polynomials (straight-line computation). It is much easier to

compute polynomials in models with subtraction [51] or division [25] than with only

addition and multiplication [16, 28, 34, 40]. Indeed, similar phenomena occur in the

computation of integers as well as that of polynomials [14].

We can also ask about the computational complexity of integer complexity it-

self, or related notions, viewed in the polynomial hierarchy of complexity theory (see

Garey and Johnson [26, Sect. 7.2]). An open question concerns the computational

complexity of computing ‖n‖. Consider the problem:

INTEGER COMPLEXITY

• INSTANCE: Positive integers n and k, both encoded in binary.

• QUESTION: Is ‖n‖ ≤ k?

This problem is known to be in the complexity class NP (Arias de Reyna [8]), but it

is not known to be either in P or in co-NP , nor is it known to be NP -complete.

This thesis introduces the ordering of defects as an object of investigation. Hence

we can also consider the problem:

DEFECT ORDERING

• INSTANCE: Positive integers n1 and n2, both encoded in binary.

• QUESTION: Is δ(n1) ≤ δ(n2)?

This problem, of computing the defect ordering is not known to be in the complexity

class NP. If one could answer INTEGER COMPLEXITY in polynomial time, then

59

one could also answer DEFECT ORDERING in polynomial time. To show this,

observe that the inequality δ(n1) ≤ δ(n2) is equivalent to

3‖n1‖(n2)
3 ≤ 3‖n2‖(n1)

3,

and since ‖n‖ is logarithmically small, this could be computed in polynomial time

if one knew ‖n‖. This argument shows that DEFECT ORDERING belongs to the

complexity class PNP = ∆P
2 .

Another question related to the defect is that of computing a set Ss of low-defect

polynomials sufficient to describe all integers of defect δ(n) < s, i.e., a set Ss satisfying

the conditions of Theorem 3.4.10. What is the minimal cardinality of such a set, as

a function of s? What is the complexity of computing one (say for s integral, or

rational)? The proof of Theorem 3.4.10 does give a construction of one such set Ss;
however there exist other such sets Ss, perhaps some smaller or computable more

quickly than the one constructed.

3.2 Properties of the defect

We begin by reviewing the relevant properties of integer complexity and the defect

from Chapter 2. They can be summed up in the following theorem:

Theorem 3.2.1. We have:

1. For all n, δ(n) ≥ 0.

2. For k ≥ 0, δ(3kn) ≤ δ(n), with equality if and only if ‖3kn‖ = 3k + ‖n‖. The

difference δ(n)− δ(3kn) is a nonnegative integer.

3. If the difference δ(n)− δ(m) is rational, then n = m3k for some integer k (and

so δ(n)− δ(m) ∈ Z).

4. Given any n, there exists L such that for all k ≥ L, δ(3kn) = δ(3Ln). That is

to say, ‖3kn‖ = ‖3Ln‖+ 3(k − L).

5. For a given defect α, the set {m : δ(m) = α} has either the form {n3k : 0 ≤
k ≤ L} for some n and L, or the form {n3k : 0 ≤ k} for some n. This latter

occurs if and only if α is the smallest defect among δ(3kn) for k ∈ Z.

6. If δ(n) = δ(m), then ‖n‖ = ‖m‖ (mod 3).

7. δ(1) = 1, and for k ≥ 1, δ(3k) = 0. No other integers occur as δ(n) for any n.

60

Proof. Part (1) is just Selfridge’s lower bound [29]. The first statement in part (2)

is Proposition 2.2.1(3); the second statement follows from the computation δ(n) −
δ(3kn) = ‖n‖ − ‖3kn‖ + 3k. Part (3) is Proposition 2.2.6(1). Parts (4) and (5) are

Theorem 2.1.5. Part (6) is part of Proposition 2.2.6(2). For part (7), the fact that

δ(1) = 1 is immediate. The fact that δ(3k) = 0 for k ≥ 1 is the same as the fact that

‖3k‖ = 3k for k ≥ 1; that ‖3k‖ ≤ 3k is obvious, and that ‖3k‖ ≥ 3k follows from

Selfridge’s lower bound [29]. Finally, that no other integers occur as δ(n) for any n

follows from part (3).

We also recall the definitions made for discussing the above:

Definition 3.2.2. A number m is called stable if ‖3km‖ = 3k+ ‖m‖ holds for every

k ≥ 1, or equivalently if δ(3km) = δ(m) for every k ≥ 1. Otherwise it is called

unstable.

Definition 3.2.3. A natural number n is called a leader if it is the smallest number

with a given defect. By part (5) of Theorem 3.2.1, this is equivalent to saying that

either 3 - n, or, if 3 | n, then δ(n) < δ(n/3), i.e., ‖n‖ < 3 + ‖n/3‖.

Also, because of part (6) of Theorem 3.2.1, we can make the following definitions:

Definition 3.2.4. For a a congruence class modulo 3, we define

Da = {δ(n) : ‖n‖ ≡ a (mod 3), n 6= 1}

We explicitly exclude the number 1 here as it is dissimilar to other numbers whose

complexity is congruent to 1 modulo 3. This is because, unlike other numbers which

are 1 modulo 3, the number 1 cannot be written as 3j + 4 for some j, and so the

largest number that can be made with a single 1 is simply 1, rather than 4 · 3j (see

Appendix A). For this reason, numbers of complexity 1 do not really go together with

other numbers whose complexity is congruent to 1 modulo 3; however, the only such

number is 1, so we simply explicitly exclude it. So D is the disjoint union of D0, D1,

D2, and {1}.
Of course, we care not just about small defects, but about the numbers giving rise

to those small defects; so we recall the following definitions:

Definition 3.2.5. For any real r ≥ 0, define the set of r-defect numbers Ar to be

Ar := {n ∈ N : δ(n) < r}.

61

Define the set of r-defect leaders Br to be

Br := {n ∈ Ar : n is a leader}.

These sets are related by:

Proposition 3.2.6. For every n ∈ Ar, there exist a unique m ∈ Br and k ≥ 0 such

that n = 3km and δ(n) = δ(m); then ‖n‖ = ‖m‖+ 3k.

Proof. The first part of this is Proposition 2.2.8(2). The second part follows as then

‖n‖ = δ(n) + 3 log3(3
km) = 3k + δ(m) + 3 log3m = ‖m‖+ 3k.

3.2.1 Inductive covering of Br and Ar

In addition to the above properties of the defect, there are two substantive theorems

we will need from Chapter 2. They allow us to inductively build up the sets Ar and

Br, or at least coverings of these. The first provides the base case:

Theorem 3.2.7. For every α with 0 < α < 1, the set of leaders Bα is a finite set.

The other theorem provides the inductive step, telling us how to build up B(k+1)α

from previous Biα. In order to state it we’ll first need some definitions.

Definitions 3.2.8. We say n is most-efficiently represented as ab if n = ab and

‖n‖ = ‖a‖+ ‖b‖, or as a+ b if n = a+ b and ‖n‖ = ‖a‖+ ‖b‖. In the former case we

will also say that n = ab is a good factorization of n. We say n is solid if it cannot be

written most-efficiently as a+b for any a and b. We say n is m-irreducible if it cannot

be written most-efficiently as ab for any a and b. And for a real number α ∈ (0, 1), we

define the set Tα to consist of 1 together with those m-irreducible numbers n which

satisfy
1

n− 1
> 3

1−α
3 − 1

and do not satisfy ‖n‖ = ‖n− b‖+ ‖b‖ for any solid numbers b with 1 < b ≤ n/2.

Note that for any α ∈ (0, 1), the set Tα is a finite set, due to the upper bound on

the size of numbers n ∈ Tα.

Now we can state the theorem. The theorem provides fives possibilities; three

“generic cases” (1 through 3), and two “exceptional cases” (4 and 5).

62

Theorem 3.2.9. Suppose that 0 < α < 1 and that k ≥ 1. Then any n ∈ B(k+1)α can

be most-efficiently represented in (at least) one of the following forms:

1. For k = 1, there is either a good factorization n = u · v where u, v ∈ Bα, or a

good factorization n = u · v · w with u, v, w ∈ Bα;

For k ≥ 2, there is a good factorization n = u · v where u ∈ Biα, v ∈ Bjα with

i+ j = k + 2 and 2 ≤ i, j ≤ k.

2. n = a+ b with ‖n‖ = ‖a‖+ ‖b‖, a ∈ Akα, b ≤ a a solid number and

δ(a) + ‖b‖ < (k + 1)α + 3 log3 2.

3. There is a good factorization n = (a + b)v with v ∈ Bα, a + b being a most-

efficient representation, and a and b satisfying the conditions in the case (2)

above.

4. n ∈ Tα (and thus in particular either n = 1 or ‖n‖ = ‖n− 1‖+ 1.)

5. There is a good factorization n = u · v with u ∈ Tα and v ∈ Bα.

By applying these two theorems, we can inductively build up the sets Br and Ar;

in a sense they form the engine of our proof. However, without additional tools, it can

be hard to say anything about just what these theorems output. In Section 3.4, we

will show how to group the output of these theorems into tractable families, allowing

us to go beyond the earlier work of Chapter 2 and prove the main theorem.

3.3 Stable defects and stable complexity

It will also be useful here to introduce the notion of “stable defect” and “stable

complexity”. First, let us discuss the defects of stable numbers.

Proposition 3.3.1. If δ(n) = δ(m) and n is stable, then so is m.

Proof. Suppose δ(n) = δ(m) and n is stable. Then we can write m = 3kn for some

k ∈ Z. Now, a number a is stable if and only if δ(3`a) = δ(a) for all ` ≥ 0; so if

k ≥ 0, then m is stable. If, on the other hand, k < 0, then consider ` ≥ 0. If ` ≥ −k,

then δ(3`m) = δ(3`+kn) = δ(n), while if ` ≤ −k, then δ(n) ≤ δ(3`m) ≤ δ(m), so

δ(3`m) = δ(m); hence m is stable.

Because of this proposition, it makes sense to make the following definition:

63

Definition 3.3.2. We define a stable defect to be the defect of a stable number, and

define Dst to be the set of all stable defects. Also, for a a congruence class modulo 3,

we define Da
st = Da ∩Dst.

Note that the integer 1 is not stable, and so its defect, which is also 1, would be

excluded from D1
st even if we had not explicitly excluded it in the definition of D1.

This double use of the word “stable” could potentially be ambiguous if we had a

positive integer n which were also a defect. However, the only positive integer which

is also a defect is 1, which is not stable in either sense.

Proposition 3.3.3. A defect α is stable if and only if it is the smallest β ∈ D such

that β ≡ α (mod 1).

Proof. This follows from parts (2), (3), and (5) of Theorem 3.2.1.

Definition 3.3.4. For a positive integer n, define the stable defect of n, denoted

δst(n), to be δ(3kn) for any k such that 3kn is stable. (This is well-defined as if 3kn

and 3`n are stable, then k ≥ ` implies δ(3kn) = δ(3`n), and so does ` ≥ k.)

Here are two equivalent characterizations:

Proposition 3.3.5. The number δst(n) can be characterized by:

1. δst(n) = mink≥0 δ(3
kn)

2. δst(n) is the smallest α ∈ D such that α ≡ δ(n) (mod 1).

Proof. Part (1) follows from part (2) Theorem 3.2.1 and the fact that m is stable if and

only if δ(3km) = δ(m) for all k ≥ 0. To prove part (2), take k such that 3kn is stable.

Then δ(3kn) ≡ δ(n) (mod 1), and it is the smallest such by Proposition 3.3.3.

So we can think about Dst either as the subset of D consisting of the stable defects,

or we can think about it as the image of δst. (This latter way of thinking doesn’t

work so well for the Da
st, however.)

Just as we can talk about the stable defect of a number n, we can also talk about

its stable complexity – what the complexity would be “if n were stable”.

Definition 3.3.6. For a positive integer n, we define the stable complexity of n,

denoted ‖n‖st, to be ‖3kn‖ − 3k for any k such that 3kn is stable. This is well-

defined; if 3kn and 3`n are both stable, say with k ≤ `, then

‖3kn‖ − 3k = 3(k − `) + ‖3`n‖ − 3k = ‖3`n‖ − 3`.

64

Proposition 3.3.7. We have:

1. ‖n‖st = mink≥0(‖3kn‖ − 3k)

2. δst(n) = ‖n‖st − 3 log3 n

Proof. To prove part (1), observe that ‖3kn‖−3k is nonincreasing in k, since ‖3m‖ ≤
3 + ‖m‖. So a minimum is achieved if and only if for all `,

‖3k+`n‖ − 3(k + `) = ‖3kn‖ − 3k,

i.e., for all `, ‖3k+`n‖ = ‖3kn‖+ 3`, i.e., 3kn is stable.

To prove part (2), take k such that 3kn is stable. Then

δst(n) = δ(3kn) = ‖3kn‖ − 3 log3(3
kn) = ‖3kn‖ − 3k − 3 log3 n = ‖n‖st − 3 log3 n.

Proposition 3.3.8. We have:

1. δst(n) ≤ δ(n), with equality if and only if n is stable.

2. ‖n‖st ≤ ‖n‖, with equality if and only if n is stable.

Proof. The inequality in part (1) follows from Proposition 3.3.5. Also, if n is stable,

then for any k ≥ 1, we have δ(3kn) = δ(n), so δst(n) = δ(n). Conversely, if δst(n) =

δ(n), then by Proposition 3.3.5, for any k ≥ 1, we have δ(3kn) ≥ δ(n). But also

δ(3kn) ≤ δ(n) by part (2) of Theorem 3.2.1, and so δ(3kn) = δ(n) and n is stable.

Part (2) follows from part (1) along with part (2) of Proposition 3.3.7.

We will write more about the properties of ‖n‖st in Chapter 5.

3.4 Low-defect polynomials

The primary tool we will use to prove the main theorem is to group the numbers

produced by the main theorem of Chapter 2 into families. Each of these families

will be expressed via a multilinear polynomial in Z[x1, x2, . . .], which we will call a

low-defect polynomial. We will associate these with a “base complexity” to form a

low-defect pair. Formally:

Definition 3.4.1. We define the set P of low-defect pairs as the smallest subset of

Z[x1, x2, . . .]× N such that:

65

1. For any constant polynomial k ∈ N ⊆ Z[x1, x2, . . .] and any C ≥ ‖k‖, we have

(k, C) ∈P.

2. Given (f1, C1) and (f2, C2) in P, we have (f1 ⊗ f2, C1 + C2) ∈P, where, if f1

is in r1 variables and f2 is in r2 variables,

(f1 ⊗ f2)(x1, . . . , xr1+r2) := f1(x1, . . . , xr1)f2(xr1+1, . . . , xr1+r2).

3. Given (f, C) ∈P, c ∈ N, and D ≥ ‖c‖, we have (f ⊗x1 + c, C+D) ∈P where

⊗ is as above.

The polynomials obtained this way will be referred to as low-defect polynomials.

If (f, C) is a low-defect pair, C will be called its base complexity. If f is a low-defect

polynomial, we will define its absolute base complexity, denoted ‖f‖, to be the smallest

C such that (f, C) is a low-defect pair.

Note that the degree of a low-defect polynomial is also equal to the number of

variables it uses; see Proposition 3.4.2. We will often refer to the “degree” of a

low-defect pair (f, C); this refers to the degree of f .

Note that we do not really care about what variables a low-defect polynomial (or

pair) is in – if we permute the variables of a low-defect polynomial or replace them

with others, we will still regard the result as a low-defect polynomial. From this

perspective, the meaning of f ⊗ g could be simply regarded as “relabel the variables

of f and g so that they do not share any, then multiply f and g”. Helpfully, the ⊗
operator is associative not only with this more abstract way of thinking about it, but

also in the concrete way it was defined above.

One can actually get additional information by looking at not just the pair (f, C)

but the process by how it was built-up and the underlying low-defect expression

represented by the polynomial f ; we will not need this at present, though. We will

take this approach in Chapter 5, however; see Section 5.4 for more information on

low-defect expressions.

3.4.1 Properties of low-defect polynomials

Let us begin by stating some structural properties of low-defect polynomials.

Proposition 3.4.2. Suppose f is a low-defect polynomial of degree r. Then f is

a polynomial in the variables x1, . . . , xr, and it is a multilinear polynomial, i.e., it

has degree 1 in each of its variables. The coefficients are non-negative integers. The

66

constant term is nonzero, and so is the coefficient of x1 . . . xr, which we will call the

leading coefficient of f .

Proof. We prove the statement by structural induction.

If the low-defect polynomial f is just a constant n, it has no variables and the

leading coefficient and constant term are both n, which is positive.

If f = g ⊗ h, say f(x1, . . . , xr) = g(x1, . . . , xs)h(xs+1, . . . , xr), then by the induc-

tive hypothesis f is a product of two polynomials whose coefficients are nonnegative

integers, and thus so is f . To see that f is multilinear, consider a variable xi; if

1 ≤ i ≤ s, then xi has degree 1 in g(x1, . . . , xs) and degree 0 in h(xs+1, . . . , xr), while

if r + 1 ≤ i ≤ s, the reverse is true. Either way, xi has degree 1 in f .

The coefficient of x1 . . . xr in f is the product of the coefficient of x1 . . . xs in g

and the coefficient of x1 . . . xr−s in h and so does not vanish, and the constant term

of f is the product of the constant terms of g and h and so does not vanish.

Finally, if f = g ⊗ x1 + c, say f(x1, . . . , xr) = g(x1, . . . , xr−1)xr + c, then since g

has coefficients that are nonnegative integers, so does f . To see that f is multilinear,

consider a variable xi; for 1 ≤ i ≤ r − 1, the variable xi has degree 1 in g and hence

so does in f , while xr has degree 0 in g and hence has degree 1 in f as well. Finally,

the coefficient of x1 . . . xr in f is the same as the coefficient of x1 . . . xr−1 in g and

hence does not vanish, while the constant term of f is c, which is positive.

We will also need the following lemma in Section 3.6:

Lemma 3.4.3. For any low-defect polynomial f of degree k > 0, there exist low-defect

polynomials g and h and a positive integer c such that f = h⊗ (g ⊗ x1 + c).

Proof. We apply structural induction. Since f has degree greater than zero, it is not

a constant. Hence it can be written either as f1 ⊗ f2 (in which case at least one of

these has degree greater than zero) or as g ⊗ x1 + c. In the latter case we are done,

writing f = 1⊗ (g ⊗ x1 + c).

In the former case, without loss of generality, say f2 has degree r > 0. (Since if f2 is

a constant, we have f1⊗f2 = f2⊗f1.) Then by the inductive hypothesis, there are low-

defect polynomials g2 and h2 and a positive integer c2 such that f2 = h2⊗(g2⊗x1+c),

so f = (f1 ⊗ h2)⊗ (g2 ⊗ x1 + c), as needed.

There is more that can be said about the structure of low-defect polynomials, as

we will show in Chapter 5.

67

3.4.2 Numbers 3-represented by low-defect polynomials

We will obtain actual numbers from these polynomials by substituting in powers of

3 as mentioned in Section 3.1. Let us state here the following obvious but useful

lemma:

Lemma 3.4.4. For any a, b, and n, ‖abn‖ ≤ ‖a‖+ n‖b‖.

Proof. If n ≥ 1, then ‖abn‖ ≤ ‖a‖ + ‖bn‖ ≤ ‖a‖ + n‖b‖. Whereas if n = 0, then

‖abn‖ = ‖a‖ = ‖a‖+ n‖b‖.

This provides an upper bound on the complexities of the outputs of these poly-

nomials:

Proposition 3.4.5. If (f, C) is a low-defect pair of degree r, then

‖f(3n1 , . . . , 3nr)‖ ≤ C + 3(n1 + . . .+ nr).

Proof. We prove the statement by structural induction. If f is a constant k, then

C ≥ ‖k‖, and we are done.

If there are low-defect pairs (g1, D1) and (g2, D2) (say of degrees s1 and s2) such

that f = g1 ⊗ g2 and C = D1 +D2, then

‖f(3n1 , . . . , 3nr)‖ ≤ ‖g1(3n1 , . . . , 3ns1)‖+ ‖g2(3ns1+1 , . . . , 3nr)‖

≤ D1 +D2 + 3(n1 + . . .+ nr) = C + 3(n1 + . . .+ nr).

In the last case, if there is a low-defect pair (g,D) and a constant c with C ≥
D + ‖c‖ such that f = g ⊗ x1 + c, we apply Lemma 3.4.4:

‖f(3n1 , . . . , 3nr)‖ ≤ ‖g(3n1 , . . . , 3nr−1)‖+ 3nr + ‖c‖

≤ D + ‖c‖+ 3(n1 + . . .+ nr) ≤ C + 3(n1 + . . .+ nr).

Note that because of the two cases in the proof of Lemma 3.4.4, the picture in

Figure 3.1 is slightly inaccurate; this is only the picture when 3k is plugged in for

k ≥ 1. See Figure 3.2 for an illustration of what happens when we plug in 30.

Because of Proposition 3.4.5, we define:

Definition 3.4.6. Given a low-defect pair (f, C) (say of degree r) and a number N ,

we will say that (f, C) efficiently 3-represents N if there exist nonnegative integers

68

Figure 3.2: A tree corresponding to the polynomial (2x1+1)x2+1, and the same tree
after making the substitution x1 = 31, x2 = 30; observe how the top multiplication
node disappears.

+
b
b

"
"
×
b
b

"
"

+
Q
Q

�
�
×
cc##

+
SS��

1 1

x1

1

x2

1

+
HHH

���
+
aaa

!!!
×
H
HH

�
��

+
SS��

1 1

+
ll,,

+
SS��

1 1

1

1

1

n1, . . . , nr such that N = f(3n1 , . . . , 3nr) and ‖N‖ = C + 3(n1 + . . .+ nr). More gen-

erally, we will also say f 3-represents N if there exist nonnegative integers n1, . . . , nr

such that N = f(3n1 , . . . , 3nr).

Note that if (f, C) efficiently 3-represents N , then (f, ‖f‖) efficiently 3-represents

N , which means that in order for (f, C) to 3-represent anything efficiently at all, we

must have C = ‖f‖. However it is still worth using low-defect pairs rather than just

low-defect polynomials since we may not always know ‖f‖. This chapter will not be

concerned with these sorts of computational issues, but in Chapter 5 we will discuss

how to refine the theorems here to allow for computation.

For this reason it makes sense to use “f efficiently 3-represents N” to mean “some

(f, C) efficiently 3-represents N” or equivalently “(f, ‖f‖) efficiently 3-reperesents

N”.

In keeping with the name, the numbers 3-represented by a low-defect polynomial

have bounded defect. First let us make two definitions:

Definition 3.4.7. Given a low-defect pair (f, C), we define δ(f, C), the defect of

(f, C), to be C − 3 log3 a, where a is the leading coefficient of f . When we are not

concerned with keeping track of base complexities, we will use δ(f) to mean δ(f, ‖f‖).

Definition 3.4.8. Given a low-defect pair (f, C) of degree r, we define

δf,C(n1, . . . , nr) = C + 3(n1 + . . .+ nr)− 3 log3 f(3n1 , . . . , 3nr).

We will also define δf to mean δf,‖f‖ when we are not concerned with keeping track

69

of base complexities.

Then we have:

Proposition 3.4.9. Let (f, C) be a low-defect pair of degree r, and let n1, . . . , nr be

nonnegative integers.

1. We have

δ(f(3n1 , . . . , 3nr)) ≤ δf,C(n1, . . . , nr)

and the difference is an integer.

2. We have

δf,C(n1, . . . , nr) ≤ δ(f, C)

and if r ≥ 1, this inequality is strict.

Proof. For part (1), observe that this inequality is just Proposition 3.4.5 with the

quantity 3 log3(f(3n1 , . . . , 3nr) subtracted off both sides. And since Proposition 3.4.5

is an inequality of integers, the difference is an integer.

For part (2), let a denote the leading coefficient of f . Then by Proposition 3.4.2,

f(3n1 , . . . , 3nr) ≥ a · 3n1+...+nr ,

and this inequality is strict if r ≥ 1 (since the constant term of f does not vanish).

So

δf,C(n1, . . . , nr) = C + 3(n1 + . . .+ nr)− 3 log3 f(3n1 , . . . , 3nr)

≤ C + 3(n1 + . . .+ nr)− 3 log3(a)− 3(n1 + . . .+ nr)

= C − 3 log3(a) = δ(f, C),

and this inequality is strict if r ≥ 1.

3.4.3 Low-defect polynomials give all leaders of small defect

The reason these polynomials are relevant is as follows:

Theorem 3.4.10. For any real r ≥ 0, there exists a finite set Sr of low-defect pairs

satisfying the following conditions:

1. Each (f, C) ∈ Sr has degree at most brc;

70

2. For every N ∈ Br, there exists some (f, C) ∈ Sr that efficiently 3-represents N .

Proof. We prove this statement in the following form: For any real α ∈ (0, 1) and any

integer k ≥ 1, there exists a finite set Sk,α of low-defect pairs, each of degree at most

k − 1, such that for every N ∈ Bkα there exists some (f, C) ∈ Sα,r that efficiently

3-represents N . Once we have this, the result will follow by taking Sr = Sk,α for

k = brc+ 1 and α = r
brc+1

.

We prove this by induction on k. If k = 1, then Bα is finite by Theorem 3.2.7, so

we can take S1,α = {(N, ‖N‖) : N ∈ Bα}. Now suppose the statement is true for k,

and we want to prove it for k + 1, so we have already constructed sets Si,α for i ≤ k.

We will define the set Sk+1,α to consist of the following:

1. If k + 1 > 2, then for (f, C) ∈ Si,α and (g,D) ∈ Sj,α with 2 ≤ i, j ≤ k and

i+ j = k + 2 we include (f ⊗ g, C +D) in Sk+1,α;

while if k + 1 = 2, then for (f1, C1), (f2, C2), (f3, C3) ∈ S1,α, we include (f1 ⊗
f2, C1 + C2) and (f1 ⊗ f2 ⊗ f3, C1 + C2 + C3) in S2,α.

2. For (f, C) ∈ Sk,α and any solid number b with ‖b‖ < (k + 1)α + 3 log3 2, we

include (f ⊗ x1 + b, C + ‖b‖) in Sk+1,α.

3. For (f, C) ∈ Sk,α, any solid number b with ‖b‖ < (k + 1)α + 3 log3 2, and any

v ∈ Bα, we include (v(f ⊗ x1 + b), C + ‖b‖+ ‖v‖) in Sk+1,α.

4. For all n ∈ Tα, we include (n, ‖n‖) in Sk+1,α.

5. For all n ∈ Tα and v ∈ Bα, we include (vn, ‖vn‖) in Sk+1,α.

This is a finite set, as the Si for i ≤ k are all finite, Bα is finite, Tα is finite, and

there are only finitely many b satisfying ‖b‖ < (k+ 1)α+ 3 log3 2, as this implies that

3 log3 b < (k + 1)α + 3 log3 2.

Also, all elements of Sk+1,α have degree at most k: In case (1), if k + 1 > 2, f and

g have degree at most i− 1 and and j − 1 respectively, so f ⊗ g has degree at most

i+ j − 2 = k, while if k + 1 = 2, then f1, f2, and f3 all have degree 0, so f1 ⊗ f2 and

f1 ⊗ f2 ⊗ f3 also have degree 0. In cases (2) and (3), f has degree at most k − 1, so

f⊗x1+b has degree at most k. Finally, in cases (4) and (5), we are adding low-defect

pairs of degree 0.

So suppose that N ∈ B(k+1)α; we apply Theorem 3.2.9.

71

In case (1) of Theorem 3.2.9, if k + 1 > 2, then there is a good factorization

N = uv where u ∈ Biα, v ∈ Bjα with i + j = k + 2 and 2 ≤ i, j ≤ k. So by the

inductive hypothesis, we can take (f, C) ∈ Si,α and (g,D) ∈ Sj,α such that (f, C)

efficiently 3-represents u and (g,D) efficiently 3-represents v. Since the factorization

N = uv is good, it follows that (f ⊗ g, C +D) efficiently represents N . If k + 1 = 2,

there is either a good factorization n = u1u2 or a good factorization n = u1u2u3 with

all u` ∈ Bα. So take (f`, C`) ∈ S1,α such that (f`, C`) efficiently 3-represents ul; then

either (f1 ⊗ f2, C1 +C2) or (f1 ⊗ f2 ⊗ f3, C1 +C2 +C3) efficiently 3-represents N , as

appropriate.

In case (2) of Theorem 3.2.9, there are a and b with N = a+ b, ‖N‖ = ‖a‖+ ‖b‖,
a ∈ Akα, b ≤ a a solid number, and

δ(a) + ‖b‖ < (k + 1)α + 3 log3 2.

In particular, we have ‖b‖ < (k + 1)α + 3 log3 2. Write a = a′3` with a′ a leader and

‖a‖ = ‖a′‖ + 3`, so a′ ∈ Bkα, and pick (f, C) ∈ Sk,α that efficiently 3-represents a′.

Then (f ⊗ x1 + b, C + ‖b‖) is in Sk+1,α and efficiently 3-represents N . In case (3) of

Theorem 3.2.9, there is a good factorization n = (a + b)v with v ∈ Bα and a and b

satisfying the conditions in the case (2) of Theorem 3.2.9, so the proof is similar; if we

write a = a′3` with a′ a leader and ‖a‖ = ‖a′‖+ 3` and pick (f, C) ∈ Sk,α efficiently

3-representing a′, then (v(f ⊗ x1 + b), C + ‖b‖+ ‖v‖) efficiently 3-represents N .

Finally, in cases (4) and (5) of Theorem 3.2.9, the pair (N, ‖N‖) is itself in Sk+1,α,

by cases (4) and (5) above. This proves the theorem.

Note that while this theorem produces a covering of Br, there is no guarantee

that for f ∈ Sr, all the numbers 3-represented by f will have defect less than r; and

in general this will not be the case. For instance, if we use the method of the proof

of Theorem 3.4.10 to produce the set S1, it will contain the polynomial 16x1 + 1,

which 3-represents the number 17, which has defect greater than 1. This deficiency

will be remedied in Chapter 5, where it will be shown how to choose the Sr to get

this additional property. There is also no guarantee that the numbers 3-represented

by f will be leaders; for instance, if we use this method to produce the set S1, it will

also contain the constant polynomials 9 and 27.

3.4.4 Augmented low-defect polynomials

Theorem 3.4.10 gives us a representation of the leaders with defect less than a fixed

r, but we want to consider all numbers with defect less than r. However, by Proposi-

72

tion 3.2.6, any number can be written most-efficiently as 3km for some k ≥ 0 and some

leader m. To account for this, we introduce the notion of an augmented low-defect

polynomial:

Definition 3.4.11. For any low-defect polynomial f , we define f̂ = f ⊗ x. The

polynomial f̂ will be called an augmented low-defect polynomial. For a low-defect

pair (f, C), the pair (f̂ , C) will be called an augmented low-defect pair.

Note that augmented low-defect polynomials are never low-defect polynomials; by

Proposition 3.4.2, low-defect polynomials always have nonzero constant term, while

an augmented low-defect polynomial always has zero constant term.

We can then make the following observations and definitions, parallel to the con-

tents of Subsections 3.4.2 and 3.4.3:

Corollary 3.4.12. If (f, C) is a low-defect pair of degree r, then

‖f̂(3n1 , . . . , 3nr+1)‖ ≤ C + 3(n1 + . . .+ nr+1).

Proof. This is immediate from Proposition 3.4.5 and Lemma 3.4.4.

Definition 3.4.13. Given a low-defect pair (f, C) (say of degree r) and a number

N , we will say (f̂ , C) efficiently 3-represents N if there exist n1, . . . , nr+1 such that

N = f̂(3n1 , . . . , 3nr+1) and ‖N‖ = C + 3(n1 + . . .+nr+1). More generally, we will also

say f̂ 3-represents N if there exist n1, . . . , nr+1 such that N = f̂(3n1 , . . . , 3nr+1).

Corollary 3.4.14. Let (f, C) be a low-defect pair of degree r, and let n1, . . . , nr be

nonnegative integers. Then

δ(f̂(3n1 , . . . , 3nr+1)) ≤ δf,C(n1, . . . , nr)

and the difference is an integer.

Proof. This inequality is just Corollary 3.4.12 with 3 log3 f̂(3n1 , . . . , 3nr+1) subtracted

off both sides. And since Corollary 3.4.12 is an inequality of integers, the difference

is an integer.

Theorem 3.4.15. For any real r ≥ 0, there exists a finite set Sr of low-defect pairs

satisfying the following conditions:

1. Each (f, C) ∈ Sr has degree at most brc;

73

2. For every N ∈ Ar, there exists some (f, C) ∈ Sr such that (f̂ , C) that efficiently

3-represents N .

Proof. This is immediate from Theorem 3.4.10 and Proposition 3.2.6.

3.5 Facts from order theory and topology

This section collects facts about well orderings and partial orderings needed to prove

the main result. Recall that a well partial order is a partial order which is well-founded

(has no infinite descending chains) and has no infinite antichains. Any totally-ordered

extension of a well partial order is well-ordered. Given a well partial order X, we can

consider the set of order types of well-orders obtained by extending the ordering on

X. It was proved by D.H.J. De Jongh and R. Parikh [21, Theorem 2.13] that for

any well partial order X, the set of ordinals obtained this way has a maximum; this

maximum is denoted o(X). They further proved [21, Theorem 3.4, Theorem 3.5]:

Theorem 3.5.1. Let X and Y be two well partial orders. Then X q Y and X × Y
are well partial orders, and o(X q Y) = o(X)⊕ o(Y), and o(X × Y) = o(X)⊗ o(Y),

where ⊕ and ⊗ are the operations of natural sum and natural product (also known as

the Hessenberg sum and Hessenberg product).

The natural sum and natural product are defined as follows [21]:

Definition 3.5.2. The natural sum (also known as the Hessenberg sum) of two

ordinals α and β, here denoted α ⊕ β, is defined by simply adding up their Cantor

normal forms as if they were “polynomials in ω”. That is to say, if there are ordinals

γ0 < . . . < γn and whole numbers a0, . . . , an and b0, . . . , bn such that α = ωγnan +

. . .+ ωγ0a0 and β = ωγnbn + . . .+ ωγ0b0, then

α⊕ β = ωγn(an + bn) + . . .+ ωγ0(a0 + b0).

Similarly, the natural product (also known as the Hessenberg product) of α and β,

here denoted α ⊗ β, is defined by multiplying their Cantor normal forms as if they

were “polynomials in ω”, using the natural sum to add the exponents. That is to say,

if we write α = ωγnan + . . . + ωγ0a0 and β = ωδmbm + . . . + ωδ0b0 with γ0 < . . . < γ0

and δ0 < . . . < δm ordinals and the ai and bi whole numbers, then

α⊗ β =
⊕
0≤i≤n
0≤j≤m

ωγi⊕δjaibj.

74

These operations are commutative and associative, and ⊗ distributes over ⊕. The

expression α⊕ β is strictly increasing in α and β; and α⊗ β is strictly increasing in

β so long as α 6= 0, and vice versa [17].

There are other definitions of these operations. Given ordinals α and β, α⊕ β is

sometimes defined as o(α q β), and α ⊗ β as o(α × β), where for this definition we

consider α and β as partial orders). As noted above, De Jongh and Parikh showed

the stronger statement Theorem 3.5.1, from which it follows that

o(α1 q . . .q αn) = α1 ⊕ . . .⊕ αn
o(α1 × . . .× αn) = α1 ⊗ . . .⊗ αn

There is also a recursive definition [19].

Note also the following statements about well partial orderings:

Proposition 3.5.3. Suppose that X is a well partially ordered set, S a totally ordered

set, and f : X → S is monotonic. Then f(X) is well-ordered, and has order type at

most o(X).

Proof. Pick a well-ordering extending the ordering ≤ on X; call it �. Define another

total ordering on X, call it ≤′, by a <′ b if either f(a) < f(b) or f(a) = f(b) and

a ≺ b. Observe that ≤′ is an extension of ≤ as f is monotonic, so it is a well-ordering

and has order type at most o(X). Since f is clearly also monotonic when we instead

use the ordering ≤′ on the domain, its image is therefore also well-ordered and of

order type at most o(X).

Note in particular that if X is the union of X1, . . . , Xn, then o(X) ≤ o(X1)⊕ . . .⊕
o(Xn) as X is a monotonic image of X1 q . . .qXn. So we have:

Proposition 3.5.4. We have:

1. If S is a well-ordered set and S = S1 ∪ . . . ∪ Sn, and S1 through Sn all have

order type less than ωk, then so does S.

2. If S is a well-ordered set of order type ωk and S = S1 ∪ . . . ∪ Sn, then at least

one of S1 through Sn also has order type ωk.

Proof. For (1), observe that the order type of S is at most the natural sum of those

of S1, . . . , Sn, and the natural sum of ordinals less than ωk is again less than ωk.

For (2), by (1), if S1, . . . , Sk all had order type less than ωk, so would S; so at

least one has order type at least ωk, and it necessarily also has order type at most

ωk, being a subset of S.

75

For the proof of the main result we will also need some facts about well-ordered

sets sitting inside the real numbers. In particular, we need results about closures and

limit points of such sets, with the ambient space carrying the order topology. Since

we have not found all the following results in the literature, we supply proofs.

Proposition 3.5.5. Let X be a totally ordered set, and let S be a well-ordered subset

of order type α. Then S is also well-ordered, and has order type either α or α + 1.

If α = γ + k where γ is a limit ordinal and k is finite, then S has order type α + 1

if and only if the initial segment of S of order type γ has a supremum in X which is

not in S.

Proof. We induct on α. If α = 0, S is empty and thus so is S.

If α = β + 1, say x is the maximum element of S and T = S \ {x}. Then

S = T ∪ {x}, and x is the maximum element of S. If x ∈ T , then S = T ; otherwise

its order type is 1 greater. So as T has order type either β or β + 1 by the inductive

hypothesis, S has order type β, β + 1 = α, or β + 2 = α + 1. Of course, the first of

these is impossible, as its order type must be at least α, since it contains S, so the

order type is either α or α + 1.

Furthermore, if β = γ + k where γ is a limit ordinal, we can let R be the initial

segment of T (equivalently, of S) of order type γ. Then by the inductive hypothesis,

T has order type β + 1 if and only if R has a supremum in X which is not in T . In

the case where x /∈ T , then x /∈ R and so x cannot be a supremum of R in X. Hence,

in this case, T has order type β + 1 if and only if R has a supremum in X which is

not in S, and so S has order type β + 2 = α + 1 if and only if R has a supremum in

X which is not in S.

In the case where x ∈ T , it must be that x is a supremum of T in X. Since x is not

itself in T , this requires that β be a limit ordinal, and hence that β = γ, i.e. T = R,

since γ is the largest limit ordinal smaller than S. So R has a supremum which is

not in T , namely, x; and so by the inductive hypothesis T has order type β + 1. As

S = T in this case, it too has order type β+1 = α. Furthermore, R has a supremum,

x, but this supremum is in S; thus the theorem is true in this case.

Finally we have the case where α is a limit ordinal. If x ∈ S, either x is an upper

bound of S or it is not; we will first consider R, the subset of S consisting of those

elements which are not upper bounds of S. For any x ∈ R, there is some y ∈ S

with y > x, and so x ∈ (−∞, y) ∩ S. Since the former is an open set, this means

x ∈ S ∩ (−∞, y). As S ∩ (−∞, y) is a proper initial segment of S, by the inductive

hypothesis, its closure is well-ordered. Note that for varying y, the sets S ∩ (−∞, y)

76

form a chain under inclusion of well-ordered sets, with smaller ones being initial

segments of larger ones. So as R is the union of these, it is well-ordered, and its order

type is equal to their supremum. Now clearly the order type of R is at least α, since

R includes S; and by the inductive hypothesis, it is at most limβ<α(β + 1) = α. So

R has order type α.

This leaves the question of elements of S that are upper bounds of S (and hence

R). The only way such an element can exist is if it is the supremum of S. Hence, if

S has a supremum in X, and this supremum is not already in S, then S has order

type α + 1, and otherwise it has order type α.

Proposition 3.5.6. Suppose X is a totally ordered set, S a subset of X, and T an

initial segment of S. Then T is an intial segment of S.

Proof. Suppose x ∈ T , y ∈ S, and y < x; we want to show y ∈ T . The set (y,∞) is

an open subset of X and contains x ∈ T , thus it also contains some t ∈ T . That is

to say, there is some t ∈ T with t > y.

Now say U is any open neighborhood of y; then U ∩ (−∞, t) is again an open

neighborhood of y, and since y ∈ S, there must exist some s ∈ S ∩U ∩ (−∞, t). But

then s ∈ S, s < t, and t ∈ T , so s ∈ T as well as we assumed that T was an initial

segment of S. Thus each neighborhood U of y contains some element of T , that is to

say, y ∈ T .

Corollary 3.5.7. Let X be a totally ordered set with the least upper bound property,

and S a well-ordered subset of X of order type α. Then if β < α is a limit ordinal,

the β’th element of S is the supremum (limit) of the initial β elements of S.

Proof. Let T be the intial segment of S of order type β. Since β < α, T is bounded

above in S, and thus in X, and thus it has a supremum s. This supremum s is

not in T as T has order type β, a limit ordinal, and thus has no maximum. So T ,

by Proposition 3.5.5, has order type β + 1, and s is clearly its final element. So

by Proposition 3.5.6, it is the β’th element of S as well, and by definition it is the

supremum of the initial β elements of S.

Proposition 3.5.8. If S is a well-ordered set of order type α < ωn+1 with n finite,

then S ′, the set of limit points of S (in the order topology) has order type strictly less

than ωn.

Proof. Since we are considering S purely as a totally-ordered set and not embedded

in anything else, we may assume it is an ordinal. Let β be the order type of S ′. The

77

elements of S ′ consist of the limit ordinals less than α. If n = 0, then α is finite and

so β = 0 < ω0.

Otherwise, α < ωn+1 so say α ≤ ωnk. An ordinal γ is a limit ordinal if and only

if it can be written as ωγ′ for some γ′ > 0. Since, assuming n > 0, ωγ′ < ωnk if and

only if γ′ < ωn−1k, the order type of the set of limit ordinals less than ωnk is easily

seen to be ωn−1k − 1 (where the 1 is subtracted off the beginning; this only makes a

difference if n = 1). So the order type of β is at most ωn−1k − 1 < ωn.

It is not too hard to write down a general formula for the order type of S ′ in terms

of the order type of S (even without the restriction that α < ωω), but we will not

need such detail here. See [43, Theorem 8.6.6] for more on this.

Proposition 3.5.9. Let T be a totally-ordered set and S a well-ordered subset. If S ′

(in the order topology on T) has order type at least ωn with n finite, then S has order

type at least ωn+1.

Proof. Suppose S has order type less than ωn+1. Then by Proposition 3.5.5, so does

S. Since S
′

= S ′, we can just consider S. And we can consider the order topology

on S instead of the subspace topology, since the former is coarser and thus S has

more limit points under it. But by Proposition 3.5.8, the order type of S
′
in the order

topology on S is less than ωn. Hence S
′

under the subspace topology also has order

type less than ωn, and hence S ′ has order type less than ωn. So if S ′ has order type

at least ωn, then S has order type at least ωn+1.

3.6 Well-ordering of defects

We now begin proving well-ordering theorems about defects.

Proposition 3.6.1. Let (f, C) be a low-defect pair; then the function δf,C is strictly

increasing in each variable.

Proof. Suppose f has degree r. We can define g, the reverse polynomial of f :

g(x1, . . . , xr) = x1 . . . xrf(x−11 , . . . , x−1r).

So g is a multilinear polynomial in x1, . . . , xr, with the coefficient of
∏

i∈S xi in g being

the coefficient of
∏

i/∈S xi in f . By Proposition 3.4.2, f has nonnegative coefficients,

so so does g; since the constant term of f does not vanish, the x1 . . . xr term of g does

not vanish. Hence g is strictly increasing in each variable.

78

Then

δf,C(n1, . . . , nr) = C + 3(n1 + . . .+ nr)− 3 log3 f(3n1 , . . . , 3nr)

= C − 3 log3

f(3n1 , . . . , 3nr)

3n1+...+nr
= C − 3 log3 g(3−n1 , . . . , 3−nr)

which is strictly increasing in each variable, as claimed.

Proposition 3.6.2. Let (f, C) be a low-defect pair of degree r; then the image of δf,C

is a well-ordered subset of R, with order type ωr.

Proof. By Proposition 3.6.1, δf,C is a monotonic function from Zr≥0 to R, and R is

totally ordered, so by Proposition 3.5.3 and Theorem 3.5.1 its image is a well-ordered

set of order type at most ωr.

For the lower bound, we induct on r. Let S denote the image of δf,C . If r = 0,

δf,C is a constant and so S has order type 1 = ω0. Now suppose r ≥ 1 and that this

is true for r − 1. By Lemma 3.4.3, we can write f = h ⊗ (g ⊗ x1 + c) where c is a

positive integer and g and h are low-defect polynomials. Unpacking this statement,

if s is the degree of h, we have f(x1, . . . , xr) = h(x1, . . . , xs)(g(xs+1, . . . , xr−1)xr + c).

Then

δf,C(n1, . . . , nr) = (C − ‖h‖) + δh(n1, . . . , ns) +

3(ns+1 + . . .+ nr−1)− 3 log3(g(3ns+1 , . . . , 3nr−1) + c3−nr).

Thus,

lim
nr→∞

δf,C(n1, . . . , nr) = C − ‖h‖+ δh(n1, . . . , ns) +

3(ns+1 + . . .+ nr−1)− 3 log3(g(3ns+1 , . . . , 3nr−1))

= C − ‖h‖ − ‖g‖+ δh(n1, . . . , ns) + δg(ns+1, . . . , nr−1)

= C − 3 log3(h(n1, . . . , ns)g(ns+1, . . . , nr−1))

= C − ‖g ⊗ h‖+ δg⊗h(n1, . . . , nr−1).

And since δf,C is increasing in nr, this means that this is in fact a limit point of S.

So we see that S ′ contains a translate of the image of δg⊗h. The degree of g ⊗ h is

r − 1, so by the inductive hypothesis, this image has order type at least ωr−1. Thus

S ′ has order type at least ωr−1, and so by Proposition 3.5.9, this means that S has

order type at least ωr.

79

Proposition 3.6.3. Let (f, C) be a low-defect pair of degree r; then the set of δ(n)

for all n 3-represented by the augmented low-defect polynomial f̂ is a well-ordered

subset of R, with order type at least ωr and at most ωr(bδ(f, C)c + 1) < ωr+1. The

same is true if f is used instead of the augmented version f̂ .

Proof. Let S be the set of all δ(n) for all n that are 3-represented by f̂ , and let T be

the image of δf,C . By Proposition 3.6.2, T is a well-ordered subset of R, of order type

ωr. Suppose n = f̂(3m1 , . . . , 3mr+1). Then by Corollary 3.4.14,

δ(n) = δf,C(m1, . . . ,mr+1)− k

for some k ≥ 0. But δf,C(m1, . . . ,mr+1) ≤ δ(f, C) by Proposition 3.4.9, and since

δ(n) ≥ 0, this implies k ≤ δ(f, C). As k is an integer, this implies

k ∈ {0, . . . , bδ(f, C)c},

which is a finite set. Let ` refer to the number bδ(f, C)c.
Thus, S is covered by finitely many translates of T ; more specifically, we can

partition T into T0 through T` such that

S = T0 ∪ (T1 − 1) ∪ . . . ∪ (T` − `).

Then the Ti all have order type at most ωr, and by Proposition 3.5.4 at least one has

order type ωr. Hence S is well-ordered of order type at most ωr(bδ(f, C)c+1) < ωr+1

by Propositions 3.5.1 and 3.5.3. And by the above reasoning, it also has order type

at least ωr.

The proof for f instead of f̂ is similar.

Proposition 3.6.4. For any s > 0, the set D ∩ [0, s) is a well-ordered subset of R
with order type at least ωbsc and less than ωbsc+1.

Proof. By Theorem 3.4.15, there exists a finite set Ss of low-defect polynomials of

degree at most bsc such that each n ∈ As can be 3-represented by f̂ for some f ∈ Ss.
By Proposition 3.6.3, for each f ∈ S, the set of defects of numbers 3-represented

by f̂ is a well-ordered set of order type less than ωbsc+1. Since D ∩ [0, s) is covered

by a finite union of these, it is also well-ordered of order type less than ωbsc+1 by

Proposition 3.5.4.

For the lower bound on the order type, if 0 < s < 1, observe that 0 ∈ D ∩ [0, s).

80

Otherwise, let k = bsc and consider the low-defect polynomial

f = (. . . (((3x1 + 1)x2 + 1)x3 + 1) . . .)xk + 1.

We have ‖f‖ ≤ 3 + k, so δ(f) ≤ k ≤ s. And since k ≥ 1, by Propostion 3.4.9

the set of δ(n) for n that are 3-represented by f is contained in D ∩ [0, s); while by

Proposition 3.6.3, it has order type at least ωk, proving the claim.

We can thus conclude:

Theorem 3.6.5. The set D is a well-ordered subset of R, of order type ωω.

Proof. By Proposition 3.6.4, we see that each initial segment of D is well-ordered,

and with order type less than ωω; hence D is well-ordered, and has order type at most

ωω. Also by Proposition 3.6.4, we can find initial segments of D with order type at

least ωn for any n ∈ N, so D has order type at least ωω.

We have now determined the order type of D . However, we have not fully deter-

mined the order types of D∩[0, s] for real numbers s. Of course in general determining

this is complicated, but we can answer the question when s is an integer:

Theorem 3.6.6. For any whole number k 6= 1, D ∩ [0, k] is a well-ordered subset of

R with order type ωk, while D ∩ [0, 1] has order type ω + 1.

Proof. The order type of D ∩ [0, k] is either the same as that of D ∩ [0, k), or that

same order type plus 1, depending on whether or not k ∈ D . By Theorem 3.2.1, the

only integral elements of D are 0 and 1, so what remains is to determine the order

type of D ∩ [0, k). For k = 0 this is clearly 1 = ω0, making the statement true for

k = 0, so assume k ≥ 1.

By Proposition 3.6.4, D ∩ [0, k) is well-ordered and has order type at least ωk.

However its order type is also equal to the supremum of the order types of D ∩ [0, r)

for r < k, and by Proposition 3.6.4, since k is an integer, these are all less than ωk.

Hence its order type is also at most ωk, and thus exactly ωk. Thus for k ≥ 1, the

order type of D ∩ [0, k] is exactly ωk, unless k = 1, in which case it is ω + 1.

Putting these together, we have the main theorem:

Proof of Theorem 3.1.2. The first part is Theorem 3.6.5. The second part follows

from the proof of Theorem 3.6.6, or from Theorem 3.6.6 and the fact that 1 is the

only nonzero defect which is also an integer.

81

We will further discuss the order type of D ∩ [0, s] when s is not an integer in a

future paper [4].

3.7 Variants of the main theorem

In this section, we prove several variants of the main theorem, all showing ωω well-

ordering for various related sets.

We begin with proving the well ordering holds for the closure D of the defect set

in R.

Proposition 3.7.1. The set D , the closure of the defect set, is well-ordered, with

order type ωω. Furthermore, for an integer k ≥ 1, the order type of D ∩ [0, k] is

ωk + 1. (And k ∈ D , so k is the ωk’th element of D).

Proof. By Proposition 3.5.5, the set D is well-ordered, and its order type is ωω since

D is unbounded in R. For the set D ∩ [0, k], observe that this set is is the same as

the closure of D ∩ [0, k] within [0, k], so Proposition 3.5.5 implies this has order type

ωk+1 since [0, k] has the least-upper-bound property. And since by Proposition 3.5.5,

for r < k the set D ∩ [0, r] has order type less than ωk, the ωk’th element must be k

itself.

The other variants of the main result include considering defect sets for integers

n whose complexity ‖n‖ falls in individual congruence classes modulo 3 and, in a

separate direction, restricting to stable defects. Furthermore results in both directions

can be combined. These defect sets are all well-ordered by virtue of being contained

in D , and the issue is to show they have the appropriate order type.

To prove the main theorem, we needed to know that given a low-defect pair (f, C)

of degree k, we have ‖f(3n1 , . . . , 3nk)‖ ≤ C + 3(n1 + . . . + nk). In order to prove

these more detailed versions, as a preliminary result we demonstrate that for certain

low-defect pairs (f, C), equality holds for “most” choices of (n1, . . . , nk). Indeed, we’ll

need an even stronger statement: Since ‖f(3n1 , . . . , 3nk)‖ ≤ C + 3(n1 + . . . + nk), it

follows that also

‖f(3n1 , . . . , 3nk)‖st ≤ C + 3(n1 + . . .+ nk),

and it’s equality in this form that we’ll need for “most” (n1, . . . , nk).

Proposition 3.7.2. Let (f, C) be a low-defect pair of degree k with δ(f, C) < k + 1.

Define its “exceptional set” to be

S := {(n1, . . . , nk) : ‖f(3n1 , . . . , 3nk)‖st < C + 3(n1 + . . .+ nk)}

82

Then the set {δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) ∈ S} has order type less than ωk. In

particular, the set {δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) /∈ S} has order type at least ωk,

and thus so does the set

{δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) ∈ Zk≥0} ∩DC
st .

Proof. The set S can be equivalently written as

{(n1, . . . , nk) : ‖f(3n1 , . . . , 3nk)‖st ≤ C + 3(n1 + . . .+ nk)− 1}

and hence as

{(n1, . . . , nk) : δst(f(3n1 , . . . , 3nk)) ≤ δf,C(n1, . . . , nk)− 1}.

Hence for (n1, . . . , nk) ∈ S, we have

δst(f(3n1 , . . . , 3nk)) ≤ δ(f, C)− 1 < k,

and thus by Proposition 3.6.4, the set of these stable defects has order type less than

ωk.

Equivalently, applying Proposition 3.5.4, the set

{δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) ∈ S}

and the set δf,C(S) have order type less than ωk, since each is a finite union of

translates of subsets of the set {δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) ∈ S}.
So consider the set

{δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) /∈ S},

which can equivalently be written as

{δst(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) /∈ S},

since for (n1, . . . , nk) /∈ S, the number f(3n1 , . . . , 3nk) is stable. This set must

have order type at least ωk by Proposition 3.6.3 and Proposition 3.5.4. Since for

(n1, . . . , nk) /∈ S, we have that f(3n1 , . . . , 3nk) is stable and

‖f(3n1 , . . . , 3nk)‖ = C + 3(n1 + . . .+ nk) ≡ C (mod 3),

83

this implies that the set

{δ(f(3n1 , . . . , 3nk)) : (n1, . . . , nk) ∈ Zk≥0} ∩DC
st ,

being a superset of the above, has order type at least ωk.

Recall that Da
st denotes the set of defect values δ(n) taken by stable numbers n

having complexity ‖n‖ ≡ a (mod 3). Using the Proposition above, we can now prove:

Theorem 3.7.3. For a = 0, 1, 2, the stable defect sets Da
st are well-ordered, with order

type ωω. Furthermore, if k ≡ a (mod 3), then the set Da
st ∩ [0, k] has order type ωk.

Proof. Each of these sets is a subset of D and so they are well-ordered with order type

at most ωω. To check that it is in fact exactly ωω, consider the following low-defect

polynomial:

fa,k := (. . . (((ax1 + 1)x2 + 1)x3 + 1) . . .)xk + 1.

Specifically, consider the low-defect pair (fa,k, ‖a‖ + k), for a = 2, 3, 4. Observe that

δ(fa,k, ‖a‖ + k) = δ(a) + k, and for these choices of a, we have δ(a) < 1. Thus for

a = 2, 3, 4, fa,k satisfies the conditions of Proposition 3.7.2. Thus for a = 2, 3, 4 and

k ≥ 0, Da+k
st has order type at least ωk. Since regardless of k, the set {2+k, 3+k, 4+k}

is a complete system of residues modulo 3, it follows that for a = 0, 1, 2 and any k,

the set Da
st has order type at least ωk. Hence Da

st has order type at least ωω and hence

exactly ωω.

Now suppose we take k ≡ a (mod 3). We know, if k 6= 1, that Da
st ∩ [0, k] has

order type at most ωk by Theorem 3.6.6. (If k = 1, we know this because 1 /∈ Dst.)

To see that it is at least ωk, we consider the low-defect pair (f3,k, 3+k). Observe that

δ(f3,k, 3 + k) = k, and so (by Proposition 3.7.2) the set D3+k
st ∩ [0, k] has order type

at least ωk. Since 3 + k ≡ a (mod 3), this is the same as the set Da
st ∩ [0, k], proving

the claim.

With this result in hand, we can now prove:

Theorem 3.7.4. We have:

1. The defect set D and stable defect set Dst are both well-ordered, both with order

type ωω. Furthermore, the set Dst ∩ [0, k] has order type ωk, and for k 6= 1, so

does D ∩ [0, k].

2. The sets Dst and D are well-ordered, both with order type ωω. Furthermore, for

k ≥ 1, the sets Dst ∩ [0, k] and Dst ∩ [0, k] have order type ωk + 1 (and both

contain k, so k is the ωk’th element of both).

84

3. For a = 0, 1, 2, the sets Da and Da
st are all well-ordered, each with order type

ωω. Furthermore, if a ≡ k (mod 3), then Da ∩ [0, k] and Da
st ∩ [0, k] have order

type ωk

4. For a = 0, 1, 2, the sets Da and Da
st are well-ordered with order type ωω. Fur-

thermore, if k ≥ 1 and a ≡ k (mod 3), then Da ∩ [0, k] and Da
st ∩ [0, k] have

order type ωk + 1 (and each contains k, so k is the ωk’th element).

Proof. The part of (1) for D is just Theorem 3.6.6. To prove the rest, observe that the

order type of Dst is ωω because it is contained in D and contains, e.g., D0
st. For k 6= 1,

we can see that the order type of Dst ∩ [0, k] is at most ωk because it is contained in

D ∩ [0, k]. For k = 1, we need to additionally note that 1 /∈ Dst. Finally, the order

type of Dst ∩ [0, k] is at least ωk because it contains Dk
st ∩ [0, k].

The part of (2) for D is Proposition 3.7.1. To prove the rest, note that by (1),

Dst is unbounded in R, and so Proposition 3.5.5 implies that Dst is well-ordered with

order type ωω. For Dst ∩ [0, k], (1) together with Proposition 3.5.5 implies this has

order ωk + 1. And since by Proposition 3.5.5, for r < k the set Dst ∩ [0, r] has order

type less than ωk, the ωk’th element must be k itself.

The part of (3) for Da is just Theorem 3.7.3. To prove the rest, observe that

the sets Da are well-ordered with order type ωω because they contain Da
st and are

contained in D . Furthermore, if a ≡ k (mod 3), then Da ∩ [0, k] has order type at

least ωk by Theorem 3.7.3. If k 6= 1, then Theorem 3.6.6 shows it has order type at

most ωk; for k = 1, we need to additionally note that 1 /∈ Da.

Finally, to prove (4), note that by Theorem 3.7.3 and (3), Da and Da
st are un-

bounded in R, and so Proposition 3.5.5 implies Da
st and Da are well-ordered with

order type ωω. For Da
st ∩ [0, k] and Da ∩ [0, k], Theorem 3.7.3 and (3) together with

Proposition 3.5.5 imply these have order type ωk +1. And since by Proposition 3.5.5,

for r < k the sets Da
st ∩ [0, r] and Da ∩ [0, r] has order type less than ωk, the ωk’th

element must be k itself.

We can also re state this result in the following way:

Corollary 3.7.5. We have:

1. For k ≥ 1, the ωk’th elements of D and Dst are both k. If a ≡ k (mod 3), this

is also true of Da and Da
st.

2. For k ≥ 0, the supremum of the initial ωk elements of D is k, and so is that of

the initial ωk elements of Dst. If a ≡ k (mod 3), then this is also true of Da

and Da
st.

85

Proof. Part (1) is just Theorem 3.7.4. Part (2), for k ≥ 1, is Theorem 3.7.4 and

Corollary 3.5.7. For k = 0, this is just the observation that 0 is the intial element of

D and so also of Dst, D0, and D0
st (since these all contain 0).

So we have now exhibited sixteen particular sets of defects that are well-ordered

with order type ωω: D , Dst, the closures of these sets, and for a = 0, 1, 2, the sets

Da, Da
st, and their closures. We leave it for future work to resolve which of these sets

are distinct.

86

Chapter 4

Addition Chains and Well-Ordering

Abstract: An addition chain for n is defined to be a sequence (a0, a1, . . . , ar)

such that a0 = 1, and, for any k with 1 ≤ k ≤ r, there exist 0 ≤ i, j < k such

that ak = ai + aj ; the number r is called the length of the addition chain. The

shortest length among addition chains for n, called the addition chain length of

n, is denoted `(n). The number `(n) is always at least log2 n; in this chapter we

consider the difference δ`(n) := `(n)− log2 n, which we call the addition chain

defect. First we use this notion to show that for any n, there exists K such that

for any k ≥ K, we have `(2kn) = `(2Kn) + (k −K). The main result is that

the set of values of δ` is a well-ordered subset of [0,∞), with order type ωω.

The results obtained here are analogous to the results for integer complexity

obtained in Chapters 2 and 3. We also prove similar well-ordering results for

restricted forms of addition chain length, such as star chain length and Hansen

chain length.

4.1 Introduction

An addition chain for n is defined to be a sequence (a0, a1, . . . , ar) such that a0 = 1,

and, for any k with 1 ≤ k ≤ r, there exist 0 ≤ i, j < k such that ak = ai + aj;

the number r is called the length of the addition chain. The shortest length among

addition chains for n, called the addition chain length of n, is denoted `(n). Addition

chains were introduced in 1894 by H. Dellac [22] and reintroduced in 1937 by A. Scholz

[41], who raised a series of questions about them. They have been much studied in

the context of computation of powers, since an addition chain for n of length r allows

one to compute xn from x using r multiplications. Extensive surveys on the topic can

be found in Knuth [35, Section 4.6.3] and Subbarao [46].

Addition chain length is approximately logarithmic; it satisfies the bounds

log2 n ≤ `(n) ≤ blog2 nc+ ν2(n)− 1,

87

in which ν2(n) counts the number of 1’s in the binary expansion of n. The lower

bound follows from the observation that the largest number that can be made with

an addition chain of k steps is 2k, since each step can at most double the previous

number. The upper bound follows from writing n using the “binary method”, which

can be defined recursively: The binary chain for 2n is the binary chain for n followed

by 2n, and the binary chain for 2n+ 1 is the binary chain for 2n followed by 2n+ 1;

this chain has length blog2 nc+ ν2(n)− 1. In fact, A. Brauer [15] proved in 1939 that

`(n) ∼ log2 n.

The addition chain complexity function `(n) seems complicated and hard to com-

pute. An outstanding open problem about it is the Scholz-Brauer conjecture ([41,

Question 3]), which asserts that

`(2n − 1) ≤ n+ `(n)− 1.

To investigate it Brauer [15] introduced a restricted type of addition chain called a

star chain, and later authors introduced other restricted types of addition chains,

such as Hansen chains, discussed in Section 4.1.3. Later Knuth [35] introduced the

quantity s(n) := `(n)−blog2 nc, which he called the number of small steps of n. This

notion was subsequently used by other authors ([27, 47, 50]) investigating the general

behavior of `(n) and the Scholz-Brauer conjecture. The Scholz-Brauer conjecture has

been verified to hold for n < 5784689, by computations of Clift [18].

In this chapter we introduce and study an invariant of addition chain length related

to small steps, where instead of rounding off we subtract off the exact logarithm log2 n.

Formally:

Definition 4.1.1. The addition chain defect δ`(n) of n is

δ`(n) := `(n)− log2 n.

This quantity is related to the number of small steps of n by the equation

s(n) = dδ`(n)e.

The lower bound result above shows that

δ`(n) ≥ 0,

with equality holding for n = 2k for k ≥ 0. The object of this chapter is to show that

88

the addition chain defect encodes a subtle structural regularity of the addition chain

length function.

4.1.1 Main Results

We prove results about the structure of the set of integers having a given defect value

α, and about the set of all defect values, called D ` below.

Our first result concerns determination of the set of integers having a given value

α of the addition chain defect. We will show that If δ`(n1) = δ`(n2) = α with n1 6= n2

then it is necessary (but not always sufficient) that n1 = 2kn2 for some (positive or

negative) integer k.

It is always the case that `(2n) ≤ `(n) + 1, and the equality `(2n) = `(n) +

1 corresponds to δ`(2n) = δ`(n). One might hope that we always have `(2n) =

`(n) + 1, but this is not the case; sometimes δ`(2n) < δ`(n). In fact, infinitely many

counterexamples are known (Thurber [50]). However infinitely many integers n have

this property, which is a stabilization phenomenon. We make the following definition.

Definition 4.1.2. A number m is called `-stable if

`(2km) = `(m) + k, for all k ≥ 0.

Otherwise it is called `-unstable.

Using the defect, we will prove:

Theorem 4.1.3. (`-stability theorem) We have:

1. If α is a value of δ`, and

S(α) := {m : δ`(m) = α}

then there is a unique integer n such that S(α) has either the form {n · 2k : 0 ≤
k ≤ K} for some finite K or else the form {n · 2k : k ≥ 0}. The integer n will

be called the leader of S(α).

2. The set S(α) is infinite if and only if α is the smallest defect occurring among

all defects δ`(2kn) for k ≥ 0, where n is the leader of S(α).

3. For a fixed odd integer n, the sequence {δ`(n · 2k) : k ≥ 0} is non-increasing.

This sequence takes on finitely many values, all differing by integers, culminat-

89

ing in a smallest value α such that if δ`(m) = α and k ≥ 0, then

`(m · 2k) = `(m) + k.

That is to say, while doubling a number n may not increase its addition chain

length by precisely 1, if one starts with a fixed n and begins doubling, eventually one

will reach a point where the length goes up by 1 each time. This result is easy to

prove and is established in Section 4.3.

We use Theorem 4.1.3 to define in Section 4.3.2 a notion of the “stable defect”

and “stable length” of a number n – these notions measure what the defect and the

addition chain length would be “if n were stable”.

The main results of the chapter concern the structure of the set of all addition

chain defect values.

Definition 4.1.4. We define D ` to be the set of all addition chain defects:

D ` = {δ`(n) : n ∈ N}.

The main result of this chapter is the following well-ordering theorem.

Theorem 4.1.5. (`-defect well-ordering theorem) The set D ` is a well-ordered subset

of R, of order type ωω.

The two main results of this chapter above are analogues for addition chains

of results we previously showed for a another notion called integer complexity, (see

Chapters 2 and 3) which has its own measure of defect. In Section 4.2 we discuss

integer complexity, define its associated notion of defect δ(n), and compare it with

addition chain complexity. Integer complexity has the feature that it is definable

by a dynamic programming recursion, and this feature played an important role in

the proof of well-ordering for defect values in Chapter 3. In contrast addition chain

complexity is apparently not definable by dynamic programming recursion, and the

proofs here require some new ideas.

As we will describe below, the proof of the main result for addition chains works

in much greater generality, and we will obtain Theorem 4.1.5 as a special case of

Theorem 4.1.13 below.

90

4.1.2 Methods

A key result which substitutes for dynamic programming and allows well ordering to

the proved in the addition chain case is the following result of Schönhage [42]:

Theorem 4.1.6 (Schönhage). For any n ≥ 1,

δ`(n) ≥ log2 ν2(n)− Cs,

where

Cs :=
2

3
+

2

3
log2 3− 1

ln 2
− log2 log

4

3
+
∞∑
k=0

log2(1 + 2−6·2
k+1) ≤ 2.13.

Our proof of Theorem 4.1.13 (and hence of Theorem 4.1.5) requires only the

assertion that δ`(n) can be bounded below by some increasing unbounded function of

ν2(n) – in fact, similar but weaker inequalities were proven earlier by E. G. Thurber

[49] and A. Cottrell [20]. However we can use Schönhage’s inequality to prove more

detailed information; see Theorem 4.6.4 and Corollary 4.6.7.

The idea of the proof is to consider initial segments of D `, say D ` ∩ [0, r]. By

Theorem 4.1.6, numbers of bounded defect have boundedly many 1’s in their binary

expansion. But as we will show in Proposition 4.6.3, the set of defects arising from

numbers with exactly k occurrences of 1 in their binary expansion is well-ordered

and has order type at least ωk−1 but less than ωk. From this fact we can conclude

(Theorem 4.6.4) that D ` ∩ [0, r] is well-ordered and has order type less than ωω, and

thence that D ` itself is well-ordered with order type at most ωω. To get the lower

bound on the order type, we note that D ` includes, for every k, the set of defects

arising from numbers with exactly k occurrences of 1 in their binary expansion; by

above, this means its order type must be at least ωk for every natural k, and hence

at least ωω.

4.1.3 Extensions and variations of the main theorem

In the discussion above we treated the addition chain length of n, but the theorems

can be proved more generally for other, similar notions of addition chain complexity

that put restrictions on the allowed set A of addition chains. A common variation

on the notion of addition chains is the notion of the star chain; a star chain is an

addition chain (a0, . . . , ar) with the additional restriction that for any k ≥ 1, there

exists i < k such that ak = ak−1 + ai. The length of the shortest star chain for n,

91

called the star chain length of n, is denoted by `∗(n). Naturally `∗(n) ≥ `(n), and

it is known that `∗(n) ∼ log2 n. We will see below that the results of this chapter

apply to star chain length as well as addition length. Indeed, we can generalize much

further.

Let A be a fixed set of addition chains, such as the set of all addition chains or the

set of star chains. We will be considering the length of the shortest addition chain in

A for a number n; we denote this length by `A(n). However we will not allow A to be

an arbitrary set of addition chains, but require it to satisfy the following admissibility

condition.

Definition 4.1.7. We define a set A of addition chains to be admissible if

1. For any n, there is an addition chain in A for n of length at most blog2 nc +

ν2(n)− 1. That is to say, `A(n) is defined and is at most blog2 nc+ ν2(n)− 1.

2. For any n, `A(2n) ≤ `A(n) + 1.

The first of these conditions says that for any n, there are chains in A for n which

are at least as short as those produced by the binary method. So, for instance, if A

includes all chains produced by the binary method, it satisfies the first condition. The

meaning of the second condition is straightforward. It is is satisfied if, for instance,

given any chain in A for n, appending 2n again yields a chain in A, or if given any

chain in A for n, doubling all the entries and prepending 1 again yields a chain in A.

Interesting examples of admissible sets of addition chains include:

1. the set of all addition chains;

2. the set of star chains;

3. the set of Hansen chains (also known as `0-chains, see Hansen [31], also [35, 46]);

4. the set of chains which are star or quasi-star (see Subbarao [46]).

Of course, there are trivial examples as well. For instance, one could let be A be just

the set of addition chains produced by the binary method; then one would always

have `A(n) = blog2 nc + ν2(n) − 1. But the particular set of addition chains chosen

will mostly not matter so long as it satisfies those two conditions.

One interesting set of addition chains that has been studied but which is not

admissible is the set of Lucas chains, also known as LUC chains ; they satisfy the

second condition but not the first. (For instance, the shortest Lucas chain for 17 has

length 6.) See Kutz [36] for more information on these.

92

Unless stated otherwise, we assume throughout that A is an admissible set of

addition chains. We can now make definitions analogous to those above with `A

replacing `:

Definition 4.1.8. For an admissible set A of addition chains, we define the A-defect

δA(n) := `A(n)− log2 n.

If A is the set of all addition chains, we just write δ`(n). If A is the set of star chains,

we write δ∗(n).

Definition 4.1.9. For an admissible set A of addition chains, we define

DA = {δA(n) : n ∈ N}.

If A is the set of all addition chains, we just write D `. If A is the set of star chains,

we write D∗.

With these, we can once again define:

Definition 4.1.10. A number m is called A-stable if `A(2km) = k+ `A(m) holds for

every k ≥ 0. Otherwise it is called A-unstable. If A is the set of all addition chains,

we write `-stable. If A is the set of star chains, we write ∗-stable.

And with these, we once again get:

Theorem 4.1.11. (A-stability theorem) Fix an admissible set A of addition chains.

Then we have:

1. If α is a value of δA, and

S(α) := {m : δA(m) = α}

then there is a unique integer n such that S(α) has either the form {n · 2k : 0 ≤
k ≤ K} for some finite K or else the form {n · 2k : k ≥ 0}. The integer n will

be called the leader of S(α).

2. The set S(α) is infinite if and only if α is the smallest defect occurring among

all defects δ`(2kn) for k ≥ 0, where n is the leader of S(α).

93

3. For a fixed odd integer n, the sequence {δA(n · 2k) : k ≥ 0} is non-increasing.

This sequence takes on finitely many values, all differing by integers, culminat-

ing in a smallest value α such that if δA(m) = α and k ≥ 0, then

`A(m · 2k) = `A(m) + k.

Another interesting variation on the set D ` or DA is to restrict to defects of stable

numbers. We make the following definition:

Definition 4.1.12. We define an A-stable defect to be the defect of an A-stable

number, and define DA
st to be the set of all A-stable defects.

This double use of the word “stable” could potentially be ambiguous if we had

a positive integer n which were also a defect. However, we will see (Corollary 4.3.5)

that only integer which occurs as a defect is 0, and so this does not occur.

With these definitions, we obtain:

Theorem 4.1.13. (A-defect well ordering theorem) For any admissible set A of

addition chains, the sets DA and DA
st are well-ordered subsets of R, of order type ωω.

In particular, the sets D `, D∗, D `
st, and D∗st are well-ordered, with order type ωω.

We remark that Schönhage’s lower bound theorem plays the same role in estab-

lishing these well-ordering results as it does in the special case of all addition chains,

since δA(n) ≥ δ`(n).

4.1.4 Further remarks

To conclude this introduction, we add a few additional remarks.

First, a natural generalization of addition chains is addition-subtraction chains,

where subtraction of two elements is permitted as an elementary operation. Here

Schönhage [42] has proved a lower bound for addition-subtraction chains analogous

to that in Theorem 4.1.6. However, our well-ordering result given in Theorem 4.1.5

does not generalize to addition-subtraction chains. Indeed, one can verify that for

k ≥ 3,

`±(2k − 1) = k + 1;

thus, if one were to define the addition-subtraction chain defect

δ±(n) := `±(n)− log2 n,

94

then one would find that the image of this function contains the infinite decreasing

sequence 1 − log2(1 − 2−k). It follows that the set of all addition-subtraction chain

defects is not well ordered with respect to the usual ordering of the real line.

Secondly, our proof of the well ordering in Theorem 4.1.5 does not currently

enable us to determine all the the cutoff values ck such that the set of defect values

D ` ∩ [1, ck) is of order type ωk. In Section 4.7 we use the known classification of

numbers with s(n) = 1 due to Gioia et al. [27] and of numbers with s(n) = 2 due

to Knuth [35] in order to determine the cutoff values for k = 1 and k = 2 to be

c1 = 1, c2 = 2 respectively. (Recall that s(n) denotes dδ`(n)e.) In Remark 4.4.7 we

discuss problems with determining values of ck for higher k.

Thirdly, in the integer complexity case there exists an effectively computable algo-

rithm for determining whether a given integer n is stable (see Chapter 5). We do not

currently know of such an algorithm in the addition chain case, and hope to return

to this question at a future time.

4.2 Comparison of addition chain complexity and integer com-
plexity

The main results in this chapter are analogues for addition chains of results recently

established for integer complexity. The (integer) complexity of a natural number n

is the least number of 1’s needed to write n using any combination of addition and

multiplication, with the order of the operations specified using parentheses grouped

in any legal nesting. For instance, n = 11 has a complexity of 8, since it can be

written using 8 ones as (1 + 1 + 1)(1 + 1 + 1) + 1 + 1, but not with any fewer. This

notion was implicitly introduced in 1953 by Kurt Mahler and Jan Popken [38], and

later popularized by Richard Guy [29]. We denote the complexity of n by ‖n‖.
The parallel results for integer complexity stem from a series of conjectures for-

mulated in 2000 by J. Arias de Reyna [8]. They include a conjecture on stability

for integer complexity, subsequently proved in 2012 by the author with J. Zelinsky

[7], which is included here as Chapter 2. That paper introduced a notion of (integer

complexity) defect

δ(n) := ||n|| − 3 log3 n,

and proved stability using that notion. Some of Arias de Reyna’s other conjectures

were reformulated by the author in terms of a well-ordering of the values of the defect

δ(n) for integer complexity, and a theorem establishing the well-ordering of the range

of the defect function was recently proved by the author in [2], which is included here

95

as Chapter 3.

In this section we expand on this analogy between integer complexity and addition

chain length. These notions have obvious similarities; each is in some sense a measure

of the resources are required to build up the number n starting from 1. Both allow

the use of addition, but integer complexity supplements this by allowing the use of

multiplication, while addition chain length supplements this by allowing the reuse of

any number at no additional cost once it has been constructed. Furthermore, both

measures are approximately logarithmic; integer complexity satisfies the bounds

3 log3 n =
3

ln 3
lnn ≤ ‖n‖ ≤ 3

ln 2
lnn, n > 1.

However, a difference worth noting is that while `(n) is known to be asymptotic

to log2 n as mentioned above, the function ‖n‖ is not known to be asymptotic to

3 log3 n; the value of the quantity lim supn→∞
‖n‖
lnn

remains unknown. Guy [29] has

asked whether ‖2k‖ = 2k for k ≥ 1; if true, it would make this quantity at least 2
ln 2

.

It is known that ‖2k‖ = 2k does hold for 1 ≤ k ≤ 48; see Chapter 5.

Another difference worth noting between the two notions is that integer com-

plexity, unlike addition chain length, can be computed via dynamic programming.

Specifically, for any n > 1,

‖n‖ = min
a,b<n∈N

a+b=n or ab=n

‖a‖+ ‖b‖.

By contrast, addition chain length is harder to compute. Suppose we have a

shortest addition chain (a0, . . . , ar−1, ar) for n; one might hope that (a0, . . . , ar−1)

is a shortest addition chain for ar−1, but this need not be the case. An example is

provided by the addition chain (1, 2, 3, 4, 7); this is a shortest addition chain for 7, but

(1, 2, 3, 4) is not a shortest addition chain for 4, as (1, 2, 4) is shorter. Moreover, there

is no way to assign to each natural number n a shortest addition chain (a0, . . . , ar)

for n such that (a0, . . . , ar−1) is the addition chain assigned to ar−1 [35]. This can be

an obstacle both to computing addition chain length and proving statements about

addition chains.

However, when one examines certain particular aspects of integer complexity

and addition chains, similarities once again appear. The stabilization result The-

orem 4.1.11 is analogous to Theorem 2.1.5. Meanwhile, the well-ordering result The-

orem 4.1.13 is analogous to part of Theorem 3.1.2. Unfortunately, it is substantially

weaker than a direct analogue of Theorem 3.1.2, since it does not tell us where the

supremum of the initial ωk defects occurs. We prove some bounds on this at the end

96

of Section 4.6 and in Section 4.7. We suspect that the supremum of the initial ωk

defects is at least k, for addition chains and for star chains; see Conjecture 4.8.1 and

Question 4.8.2.

4.3 The A-defect and A-stabilization

We will give proofs in this chapter for an arbitrary admissible set A of addition chains.

4.3.1 A-defect

The A-defect is the basic object of study in this chapter.

Proposition 4.3.1. Let A be an admissible set of addition chains. We have

1. For all integers a ≥ 1,

δA(a) ≥ 0.

Here equality holds precisely when a = 2k for some k ≥ 0.

2. For k ≥ 0,

δA(2kn) ≤ δA(n).

The difference is an integer, and equality holds if and only if

`A(2kn) = `A(n) + k.

Proof. The first statement in part (1) is just the lower bound `A(n) ≥ log2 n. And

for n = 2k, we know that `A(n) = k, so δA(n) = 0. For the converse, note that log2 n

is only an integer if n is a power of 2.

For part (2), note that by the requirements on A we have

`A(2kn) ≤ k + `A(n). (4.1)

Subtracting k+log2 n from both sides yields the stated inequality. Furthermore, since

(4.1) is an inequality of integers, the difference is an integer; and we have equality in

the result if and only if we had equality in (4.1).

As was noted in Section 4.1.1, though one might hope that `(2n) = `(n) + 1 in

general, infinitely many counterexamples are known [50]. Still, based on this idea,

we defined in Section 4.1.1 the notions of an `-stable number and in Section 4.1.3 the

notion of an A-stable number.

97

This can be alternately characterized as follows:

Proposition 4.3.2. The number m is A-stable if and only if δA(2km) = δA(m) for

all k ≥ 0.

Proof. This is immediate from Proposition 4.3.1(2).

This is already enough to prove the following:

Theorem 4.3.3. We have

1. For any m ≥ 1, there exists a finite K ≥ 0 such that 2Km is A-stable.

2. If the defect δA(m) satisfies 0 ≤ δA(m) < 1, then m itself is A-stable.

Proof. (1) From Proposition 4.3.1, we have that for any n, δA(2n) ≤ δA(n), with

equality if and only if `A(2n) = `A(n) + 1. More generally,

δA(n)− δA(2n) = `A(n) + 1− `A(2n),

and so the difference δA(n)−δA(2n) is always an integer. This means that the sequence

δA(m), δA(2m), δA(4m), . . . is non-increasing, nonnegative, and can only decrease in

integral amounts; hence it must eventually stabilize. Applying Proposition 4.3.2

proves the theorem.

(2) If δA(m) < 1, since all δA(n) ≥ 0 there is no room to remove any integral

amount, so m must be A-stable.

Note that while this proof shows that for any n there is some K such that 2Kn is

A-stable (in particular, `-stable or ∗-stable), it does not give any upper bound on K.

Because we use the actual logarithm, the value of the defect is enough to determine

a number up to a power of 2:

Proposition 4.3.4. Suppose that m and n are two positive integers, with m ≥ n.

If q := δA(n) − δA(m) is rational, then it is necessarily a nonnegative integer, and

furthermore m = n · 2k for some k ≥ 0. In particular this holds if δA(n) = δA(m).

Proof. If q = δA(n) − δA(m) is rational, then log2(m/n) is rational; since m/n is

rational, the only way this can occur is if log2(m/n) is an integer k, in which case,

since m > n, m = n · 2k with k ≥ 0. It then follows from the definition of defect that

q = `A(n) + k − `A(m).

Corollary 4.3.5. No nonzero integer occurs as δA(n) for any n.

98

Proof. If δA(n) ∈ Z, then n = 2k for some k ≥ 0 by Proposition 4.3.4; but then

δA(n) = 0.

We can now prove Theorems 4.1.11 and 4.1.3:

Proof of Theorem 4.1.11. For part (3), the non-increasing assertion follows from part

(2) of Proposition 4.3.1. Also, part (1) of Theorem 4.3.3 implies that eventually the

sequence stabilize; hence it can take only finitely many values.

For part (1), the assertion about the form of S(α) follows from Proposition 4.3.4.

The rest, and part (2), follows from the fact that δA(2kn) is nonincreasing as a function

of k.

Proof of Theorem 4.1.3. This is just Theorem 4.1.11 in the case when A is the set of

all addition chains.

4.3.2 A-stable defects and A-stable length

Knowing the defect of a number also tells us whether or not that number is stable:

Proposition 4.3.6. If δA(n) = δA(m) and n is A-stable, then so is m.

Proof. Suppose δA(n) = δA(m) and n is A-stable. Then we can write m = 2kn for

some k ∈ Z. Now, a number a is A-stable if and only if δA(2ja) = δA(n) for all j ≥ 0;

so if k ≥ 0, then m is A-stable. While if k < 0, then consider j ≥ 0; if j ≥ −k, then

δA(2jm) = δA(2j+kn) = δA(n), while if j ≤ −k, then δA(n) ≤ δA(2jm) ≤ δA(m), so

δA(2jm) = δA(m); hence m is A-stable.

Because of this proposition, Definition 4.1.12 makes more sense; a stable defect is

not just the defect of a stable number, but one for which all numbers with that defect

are stable.

Proposition 4.3.7. A defect α is A-stable if and only if it is the smallest β ∈ DA

such that β ≡ α (mod 1).

Proof. This follows from part (2) of Proposition 4.3.1, Proposition 4.3.4, and part (1)

of Theorem 4.1.11.

Definition 4.3.8. For a positive integer n, define the stable defect of n with regard

to A, denoted δAst(n), to be δA(2kn) for any k such that 2kn is A-stable. (This is

well-defined as if 2kn and 2jn are A-stable, then k ≥ j implies δA(2kn) = δA(2jn),

and so does j ≥ k.)

99

Here are two equivalent characterizations of stable defect:

Proposition 4.3.9. The number δAst(n) can be characterized by:

1. δAst(n) = mink≥0 δ
A(2kn)

2. δAst(n) is the smallest α ∈ DA such that α ≡ δ(n) (mod 1).

Proof. Part (1) follows from part (2) of Theorem 4.3.1 and the fact that m is A-

stable if and only if δA(2km) = δA(m) for all k ≥ 0. To prove part (2), take k such

that 2kn is A-stable. Then δA(2kn) ≡ δA(n) (mod 1), and it is the smallest such by

Proposition 4.3.7.

So we can think about DA
st either as the subset of DA consisting of the A-stable

defects, or we can think of it as the image of δAst. This double characterization will be

useful in Section 4.6.

Just as we can talk about the stable defect of a number n, we can also talk about

its stable length – what the length of n would be “if n were stable”.

Definition 4.3.10. For a positive integer n, we define the stable length of n with

regard to A, denoted `Ast(n), to be `A(2kn) − k for any k such that 2kn is A-stable.

This is well-defined; if 2kn and 2jn are both stable, say with k ≤ j, then

`A(2kn)− k = k − j + `A(2jn)− k = `A(2jn)− j.

Proposition 4.3.11. We have:

1. `Ast(n) = mink≥0(`
A(2kn)− k)

2. δAst(n) = `Ast(n)− log2 n

Proof. To prove part (1), observe that `A(2kn) − k is nonincreasing in k, since

`A(2m) ≤ 1 + `A(m). So a minimum is achieved if and only if for all j,

`A(2k+jn)− (k + j) = `A(2kn)− k,

i.e., for all j, `A(2k+jn) = `A(2kn) + j, i.e., 2kn is A-stable.

To prove part (2), take k such that 2kn is A-stable. Then

δAst(n) = δA(2kn) = `A(2kn)− log2(2
kn) = `A(2kn)− k − log2 n = `Ast(n)− log2 n.

100

Proposition 4.3.12. We have:

1. δAst(n) ≤ δA(n), with equality if and only if n is A-stable.

2. `Ast(n) ≤ `A(n), with equality if and only if n is A-stable.

Proof. The inequality in part (1) follows from Proposition 4.3.9. Also, if n is A-stable,

then for any k ≥ 0, δA(2kn) = δ(n), so δAst(n) = δA(n). Conversely, if δAst(n) = δA(n),

then by Proposition 4.3.9, for any k ≥ 0, δA(2kn) ≥ δA(n). But also δA(2kn) ≤ δA(n)

by part (2) of Theorem 4.3.1, and so δA(2kn) = δA(n) and n is A-stable.

Part (2) follows from part (1) along with part (2) of Proposition 4.3.11.

4.4 Bit-counting in numbers of small defect

Schönhage’s Theorem, Theorem 4.1.6, implies that for any real r ≥ 0, there is an

upper bound on how many 1’s can appear in the binary expansion of a number with

addition chain defect at most r. Because of this, we define:

Definition 4.4.1. We define a function q : [0,∞)→ N by

q(r) = max
δ`(n)≤r

ν2(n).

More generally, for an admissible set of addition chains A, we can define

qA(r) = max
δA(n)≤r

ν2(n).

Then in this language, Theorem 4.1.6 says the following:

Proposition 4.4.2. For r ≥ 0,

q(r) ≤ b2r+Csc.

Proof. Solving Theorem 4.1.6 for ν2(n) yields the inequality ν2(n) ≤ 2δ
`(n)+Cs ; since

ν2(n) is an integer, it follows that ν2(n) ≤ b2δ`(n)+Csc. Hence, q(r) ≤ b2r+Csc.

Note, by the way, the following properties of qA(r):

Proposition 4.4.3. Let A and B be admissible sets of addition chains. We have:

1. The function qA(r) is nondecreasing in real r ≥ 0.

2. For B ⊆ A and any r, qB(r) ≤ qA(r). In particular, qA(r) ≤ q(r).

101

Proof. To prove part (1), observe that as r increases, the set {n : δA(n) ≤ r} gets

larger, and hence so does qA(r) as it is a maximum taken over that set. To prove part

(2), note that for any n, δA(n) ≤ δB(n) and so the set {n : δB(n) ≤ r} is contained

in the set {n : δA(n) ≤ r}; thus qA(r) is at least as large as it is a maximum over a

superset.

Schönhage was not the first to investigate the relation between ν(n) and δ`(n) –

or rather, between ν(n) and s(n), since s(n) rather than δ`(n) has been the primary

object of study of previous authors. Schönhage’s theorem is a partial result towards

the following conjecture of Knuth and Stolarsky [35, 47, 46]:

Conjecture 4.4.4 (Knuth, Stolarsky). For all n, s(n) ≥ log2 ν2(n).

The Knuth-Stolarsky conjecture is known to be true for 0 ≤ s(n) ≤ 3. The case

s(n) = 0 is trivial; the case s(n) = 1 was proved by Gioia et al. [27]; the case s(n) = 2

was proved by Knuth [35]; and the case s(n) = 3 was proved by Thurber [50]. In fact,

Knuth proved a more detailed theorem about the case s(n) = 2; we will make use of

this in Section 4.7.2. We summarize these results formally here:

Theorem 4.4.5 (Gioia et al., Knuth, Thurber). We have:

1. For a natural number n, s(n) = 0 if and only if ν2(n) = 1.

2. For a natural number n, s(n) = 1 if and only if ν2(n) = 2.

3. For a natural number n, if s(n) = 2, then ν2(n) = 3 or ν2(n) = 4.

4. For a natural number n, if s(n) = 3, then ν2(n) ≤ 8.

This theorem yields:

Proposition 4.4.6. For k an integer with 0 ≤ k ≤ 3, q(k) = 2k.

Proof. For 0 ≤ k ≤ 3 an integer, if δ`(n) ≤ k, then ν2(n) ≤ 2k by Theorem 4.4.5.

That is to say, q(k) ≤ 2k. For the converse, observe that s(1) = 0 and ν2(1) = 1, so

q(0) ≥ 1; s(3) = 1 and ν2(3) = 2, so q(1) ≥ 2; s(15) = 2 and ν2(15) = 4, so q(2) ≥ 4;

and s(255) = 3 and ν2(255) = 8, so q(3) ≥ 8.

So while Schönhage’s theorem yields the best known result for large r, these results

settle the matter for small r.

102

Remark 4.4.7. In Section 4.6, we will give an upper bound on the order type of

D ` ∩ [0, r] in terms of q(r). So while in this chapter we state concrete bounds proved

using Theorem 4.1.6, any improvement in the upper bounds on q(r) – for instance, a

proof of the Knuth-Stolarsky conjecture – would improve these bounds. (Note that if

one wants merely to prove Theorem 4.1.5, it suffices to know that q(r) is well-defined;

one does not even need to know any bounds on it at all.) However, this does not mean

that one is limited to bounds based on q(r); in Section 4.7.2, we will demonstrate an

example of a bound that goes beyond what one can learn from study of q(r) alone.

4.5 Cutting and pasting well-ordered sets

We pause to recall some external facts dealing with the cutting and pasting of well-

ordered sets. We begin with the following theorem of P. W. Carruth [17]:

Theorem 4.5.1. Let S be a well-ordered set and suppose S = S1 ∪ S2. Then the

order type of S is at most the natural sum of the order types of S1 and S2.

The natural sum is defined as follows [17]:

Definition 4.5.2. The natural sum (also known as the Hessenberg sum) [21] of

two ordinals α and β, here denoted α ⊕ β, is defined by simply adding up their

Cantor normal forms as if they were “polynomials in ω”. That is to say, if there

are ordinals γ0 < . . . < γn and whole numbers a0, . . . , an and b0, . . . , bn such that

α = ωγnan + . . .+ ωγ0a0 and β = ωγnbn + . . .+ ωγ0b0, then

α⊕ β = ωγn(an + bn) + . . .+ ωγ0(a0 + b0).

Theorem 4.5.1 is sometimes used as the definition of the natural sum [17]. There

is also a recursive definition [19]. There is also a similar natural product [17, 21], but

we will not be using it here. See [21] for generalizations of this theorem.

From this we can then conclude:

Proposition 4.5.3. For any ordinal α:

1. If S is a well-ordered set and S = S1 ∪ . . . ∪ Sn, and S1 through Sn all have

order type less than ωα, then so does S.

2. If S is a well-ordered set of order type ωα and S = S1 ∪ . . . ∪ Sn, then at least

one of S1 through Sn also has order type ωα.

103

Proof. For (1), observe that the order type of S is at most the natural sum of those

of S1, . . . , Sn, and the natural sum of ordinals less than ωα is again less than ωα.

For (2), by (1), if S1, . . . , Sk all had order type less than ωα, so would S; so at

least one has order type at least ωα, and it necessarily also has order type at most

ωα, being a subset of S.

We can say more when the sets are interleaved with each other:

Proposition 4.5.4. Suppose α is an ordinal and S is a well-ordered set which can

be written as a finite union S1 ∪ . . . ∪ Sk such that:

1. The Si all have order types at most ωα

2. If a set Si has order type ωα, it is cofinal in S.

Then the order type of S is at most ωα. In particular, if at least one of the Si has

order type ωα, S has order type ωα.

Proof. Consider a proper initial segment of S; call it T . Let x be the smallest element

of S \ T . Let A be the set of Si of order type ωα. Since each element of A is cofinal

in S, each contains some element that is at least x, and thus not in T . That is, for

Si ∈ A, T ∩ Si is always a proper initial segment of Si. Thus T is a finite union of

proper initial segments of the elements of A and possibly improper initial segments

of the Si not in A. But any set of either of these types has order type strictly less

than ωα, and so by Proposition 4.5.3, so would T . Since each proper initial segment

of S has order type less than ωα, it follows that S has order type at most ωα. If

furthermore some Si has order type ωα, then S also has order type at least ωα and

thus exactly ωα.

We’ll be applying these propositions to take apart and put together sets of defects

in the subsequent sections.

Also worth noting is the following fact.

Proposition 4.5.5. Let X be a totally ordered set with the least upper bound property,

and S a well-ordered subset of X of order type α. Then S is a well-ordered subset of

S of order type either α or α+ 1, and if β < α is a limit ordinal, the β’th element of

S is the supremum (limit) of the initial β elements of S.

Proof. This result was proved earlier as Corollary 3.5.7.

104

4.6 Well-ordering of defects

Now we are prepared to prove that the set of defects is well-ordered.

4.6.1 Well-ordering of defect sets for n with ν2(n) ≤ k

First we observe:

Proposition 4.6.1. For any n, δAst(n) ≤ δA(n) ≤ ν2(n)− 1.

Proof. We know δAst(n) ≤ δA(n) by Proposition 4.3.12, and the rest is immediate as

δA(n) = `A(n)− log2 n ≤ blog2 nc − log2 n+ ν2(n)− 1 ≤ ν2(n)− 1.

Next we show that, applied to numbers with a fixed number of 1’s in the binary

expansion, the binary method produces a well-ordered set of defects.

Proposition 4.6.2. Let k ≥ 1 be a natural number, and define the set Sk to be

{k − 1 + blog2 nc − log2 n : ν2(n) = k}.

Then Sk is a well-ordered set, with order type ωk−1.

Proof. If ν(n) = k, write n = 2a0 + . . .+ 2ak−1 . Then blog2 nc = a0 and

k − 1 + blog2 nc − log2 n = k − 1− log2(1 + 2a1−a0 + . . .+ 2ak−1−a0).

We observe then that Sk can also be written as

{k − 1− log2(1 + 2−b1 + . . .+ 2−bk−1) : 0 < b1 < b2 < . . . < bk−1 ∈ Z}.

This set contains Sk as a0 > ai for i > 0 and the sequence of ai is decreasing, and the

converse holds as, given b1, . . . , bk−1, we can pick a0 =
∑k−1

i=1 bi and ai = a0 − bi for

i > 0. Now we can write down an order-preserving bijection φ : ωk−1 → Sk. Define

φ(c1, . . . , ck−1) = k − 1− log2(1 + 2−b1 + . . .+ 2−bk−1), where

bi = i+
i∑

j=0

cj.

105

This is a bijection as, since an element of Sk is identified by its sequence of b1, . . . , bk−1,

it has inverse given by

ci = bi − bi−1 − 1

(where we take b0 = 0). To see this is order-preserving, take (c1, . . . , ck−1) <

(c′1, . . . , c
′
k−1); say c1 = c′1, . . . , ci = c′i, ci+1 < c′i+1. Then bj = b′j for 1 ≤ j ≤ i

and b′i+1 > bi+1.

2−b1 + . . .+ 2−bk−1 > 2−b
′
1 + . . .+ 2−b

′
k−1

as they have the same binary expansion up to 2−bi place, but the former’s next 1

occurs at 2−bi+1 , and the latter’s next 1 occurs at 2−b
′
i+1 , and b′i+1 > bi+1. Since

k−1− log2(1+2−b1 + . . .+2−bk−1) is an order-reversing function of 2−b1 + . . .+2−bk−1 ,

this implies φ(c1, . . . , ck−1) < φ(c′1, . . . , c
′
k−1), proving the claim.

Next we see that this is true even when chains may be shorter than those produced

by the binary method:

Proposition 4.6.3. For k ≥ 1, the set {δA(n) : ν2(n) = k} is a well-ordered subset

of the real numbers, with order type at least ωk−1 and at most ωk−1k < ωk. The same

is true of the set {δAst(n) : ν2(n) = k}.

Proof. We prove it here for the set {δA(n) : ν2(n) = k}; the proof for the set {δAst(n) :

ν2(n) = k} is analogous.

Say ν2(n) = k, and write n = 2a0 + . . . + 2ak−1 . Then `A(n) ≤ k − 1 + a0, i.e.,

`A(n) = k − 1 + a0 −m for some integer m ≥ 0. So also

δA(n) = k − 1 + a0 −m− log2 n ≤ k − 1−m.

But also δA(n) ≥ 0, so m ≤ k− 1. As m is an integer, this means m ∈ {0, . . . , k− 1},
a finite set.

So if we fix k and let T be the set {δA(n) : ν2(n) = k} and U be the set {k − 1−
log2 n : ν2(n) = k}, then we see that T is covered by finitely many translates of Sk

from Proposition 4.6.2; more specifically, we can partition Sk into U0, . . . , Uk−1 such

that

T = U0 ∪ U1 − 1 ∪ . . . ∪ Uk−1 − (k − 1).

But by Proposition 4.6.2, Sk has order type ωk−1. So the Ui all have order type at

most ωk−1, and by Proposition 4.5.3 at least one has order type ωk−1. Hence T is

well-ordered of order type at most ωk−1k < ωk by Proposition 4.5.1, and by above it

also has order type at least ωk−1.

106

4.6.2 Well-ordering of initial segment of A-defect set

Finally we apply the existence of an upper bound on ν2 in terms of δ` to prove the

theorem:

Theorem 4.6.4. (Well-ordering of intial segments of A-defect set) Let A be an ad-

missible set of addition chains, and let r ≥ 0 be a real number. Then DA ∩ [0, r] is a

well-ordered subset of the real numbers with order type at least ωbrc and at most

ωq
A(r)−1qA(r) + . . .+ ω23 + ω2 + 1,

which is less than ωq
A(r)−1(qA(r) + 1) and hence less than ωq

A(r). The same is true of

DA
st ∩ [0, r].

Proof. Say n is a number with δA(n) ≤ r; then ν2(n) ≤ qA(r). So DA ∩ [0, r] can

be covered by the sets {δA(n) : ν2(n) = k} for k = 1, 2, . . . , qA(r). By Proposi-

tion 4.6.3, each of these sets is well-ordered, with order type at most ωk−1k. Hence

by Proposition 4.5.1, DA ∩ [0, r] is well-ordered with order type at most

ωq
A(r)−1qA(r) + . . .+ ω23 + ω2 + 1,

which is less than ωq
A(r)−1(qA(r) + 1) and hence less than ωq

A(r). Since DA
st ∩ [0, r] is

a subset of DA ∩ [0, r], this upper bound applies to it as well.

For the lower bound, observe that the set {δAst(n) : ν2(n) = brc+1} is, by Proposi-

tion 4.6.1, entirely contained within DA
st ∩ [0, r], and by Proposition 4.6.3 it has order

type at least ωbrc, and thus so does DA
st ∩ [0, r], and so also does DA ∩ [0, r].

If we plug in Theorem 4.4.2, we get an explicit version of this. We can also plug

in the other bounds in Section 4.4 to yield explicit versions of this that will be worse

for large r but sometimes better for small r; see Section 4.7 for more on this.

We can now prove Theorem 4.1.13.

Proof of Theorem 4.1.13. We prove it for DA; the proof for DA
st is analogous. Take

an initial segment of DA, say DA ∩ [0, r). Then this is contained in DA ∩ [0, r] and

so well-ordered with order type less than ωq
A(r) by Theorem 4.6.4. Hence DA is

well-ordered with order type at most ωω, as all its initial segments are well-ordered

with order type less than ωω. Furthermore, for any whole number k, DA ∩ [0, k] is

well-ordered with order type at least ωk by Theorem 4.6.4, so DA must have order

type at least ωω as well.

107

Proof of Theorem 4.1.5. This follows immediately from Theorem 4.1.13 by taking A

to be the set of all addition chains.

4.6.3 Cutoff values fA(k) for ωk-limit points

We can turn the well-ordering question around and consider, what is the supremum

(limit) of the initial ωk defects? This is of course essentially the same question, but

it is also a helpful way of thinking about the question, so we note the results here.

Definition 4.6.5. We define fA(k) to be the limit of the initial ωk defects in DA, and

fAst(k) to be the limit of the initial ωk defects in DA
st . Note that by Proposition 4.5.5,

if k ≥ 1, this is the same as the ωk’th element of DA (or DA
st), while if k = 0, this is

the same as the 0’th element of DA (or DA
st). If A is the set of all addition chains we

will write f `; if A is the set of star chains we will write f ∗.

Proposition 4.6.6. For any k, we have fA(k) ≤ fAst(k).

Proof. The set DA
st is a subset of DA; hence for α < ωω, the α’th element of DA

st is at

least the α’th element of DA. Taking limits, fAst(k) ≥ fA(k).

We now have the following corollary of Theorem 4.6.4:

Corollary 4.6.7. We have

log2(k + 1)− 2.13 < log2(k + 1)− Cs < fA(k) ≤ fAst(k) ≤ k.

Proof. For the upper bound, observe that by Theorem 4.6.4, the order type of DA
st ∩

[0, k] is at least ωk, so DA
st(ω

k) ≤ k.

For the lower bound, consider DA ∩ [0, r] with r < log2(k + 1) − Cs. Then

2r+Cs < k + 1, so b2r+Csc ≤ k. Since qA(r) ≤ b2r+Csc ≤ k by Theorem 4.4.2 and

Proposition 4.4.3, by Theorem 4.6.4, DA ∩ [0, r] has order type less than ωk−1(k+ 1).

Hence, if we consider DA ∩ [0, log2(k + 1) − Cs), all its proper initial segments have

order type less than ωk−1(k + 1), and so it has order type at most ωk−1(k + 1) < ωk.

Thus we must have fA(k) > log2(k + 1)− Cs.

We will examine this question further in the next section, where we will improve

this for small k.

108

4.7 Bounds on order type for small A-defect values

In the previous section, we proved bounds on the order types of DA ∩ [0, r] and

DA
st ∩ [0, r]. However, as was noted in Section 4.4, we can say more when r is small.

First, we note the implications of the theorems in Section 4.4 regarding the functions

fA and fAst defined in the previous section. Then we will perform a more detailed

examination of the case r ≤ 2 using a theorem of Knuth. Then we compile these

results to present bounds on fA(k) and fAst(k) when k is small. We also make some

notes on stability of numbers of small defect.

4.7.1 Bound for A-defect r < 1

The case of r ≤ 1 can be handled with part (2) of Theorem 4.4.5, that was proved

by Gioia et al.

Theorem 4.7.1. The order type of DA ∩ [0, 1] is ω, while for any r < 1, DA ∩ [0, 1]

is finite. Furthermore, all defects in DA ∩ [0, 1] are A-stable, and so the order type of

DA
st ∩ [0, 1] is ω.

Proof. Suppose that dδA(n)e = 1. Then δ`(n) ≤ δA(n) ≤ 1, so dδ`(n)e = 1 unless n is

a power of 2, and n cannot be a power of 2, as then we would have δA(n) = 0. So we

can apply Theorem 4.4.5 to conclude that n can be written as 2a + 2b for some b > a.

Conversely, if n = 2a + 2b with b > a, then `A(n) ≤ b + 1 by the assumption that A

is admissible, and we cannot have `A(n) ≤ b as otherwise we would have δA(n) < 0;

so `A(n) = b+ 1.

Thus the set DA ∩ [0, 1] is precisely {0} ∪ S2, where S2 is as in Proposition 4.6.2.

Thus by that same proposition it has order type ω. Also it is easily seen to have a

supremum of 1, so for r < 1, the set DA∩[0, r] is a proper initial segment of DA∩[0, 1]

and so has strictly smaller order type.

Furthermore, if n = 2a + 2b with b > a, then 2kn = 2a+k + 2b+k, and so `A(2kn) =

b + k + 1 = k + `A(n), and so n is A-stable. And if n = 2b, then `A(2kn) = b + k =

k+`A(n), and so again n is A-stable. This proves the stability part of the theorem.

4.7.2 Bounds for A-defect r < 2.

For the case k = 2, we will need to go beyond what is in Theorem 4.4.5. We state

here the full theorem regarding numbers with 2 small steps, as proved by Knuth [35]:

Theorem 4.7.2 (Knuth). For a positive integer n, s(n) = 2 if and only if n can be

written in one of the following forms:

109

1. 2a + 2b + 2c for 0 ≤ a < b < c

2. 2a + 2a+1 + 2a+2 + 2a+7 for a ≥ 0

3. 2a + 2a+1 + 2b + 2b+3 for b > a+ 1, a ≥ 0

4. 2a + 2b + 2c + 2b+c−a for 0 ≤ a < b < c

5. 2a + 2b + 2c + 2b+c−a+1 for 0 ≤ a < b < c

With this, we can handle the case of DA∩ [0, 2] with an argument which is similar

to that of Theorem 4.7.1 but slightly more involved:

Theorem 4.7.3. The order type of DA ∩ [0, 2] is ω2, while for r < 2, DA ∩ [0, r] has

order type strictly less than ω2. Furthermore, all defects in DA ∩ [0, 2] are A-stable,

and so the order type of DA
st ∩ [0, 2] is ω2.

Proof. Suppose that dδA(n)e = 2. Then δ`(n) ≤ δA(n) ≤ 2, so by Theorem 4.4.5,

dδ`(n)e = 2 unless ν2(n) ≤ 2, and this cannot occur, as then we would have δA(n) ≤ 1.

So we can apply Theorem 4.7.2 to conclude that n can be written in one of the forms

listed there.

Conversely, suppose we have a number n of one of the forms listed in Theo-

rem 4.7.2. Since ν2(n) > 2, `A(n) > blog2 nc + 1. And if `A(n) ≥ blog2 nc + 3,

then

δA(n) = blog2 nc+ 3− log2 n > 2.

Thus, DA ∩ (1, 2] is a subset of

T := {2 + blog2 nc − log2 n : n satisfies the conclusion of Theorem 4.7.2}.

Let Ti denote the set

{2 + blog2 nc − log2 n : n falls under case i of Theorem 4.7.2},

so that T is the union of T1 through T5. We will examine each of these sets in turn.

The set T1 is the same as the set S3 from Proposition 4.6.2, and so has order type

ω2. In fact, if n = 2a + 2b + 2c, c > b > a, then `A(n) ≤ c+ 2 by the assumption that

A is admissible, and so `A(n) = c + 2 and δA(n) < 2, meaning that all of T1, rather

than just a subset, is contained in DA ∩ [0, 2]. As was noted earlier, we can rewrite

S3 as the set

{2− log2(1 + 2−a + 2−b) : 0 < a < b ∈ Z}.

110

As a and b go to infinity, this expression goes to 2, and so we see that supT1 = 2,

and thus T1 must be cofinal in T ⊆ [0, 2).

The set T2 is easily seen to be equal to the set {9 − log2 135}, which has order

type 1 = ω0. This number is also strictly less than 2 and so T2 is not cofinal in T .

The set T3 is equal to the set {5− log2(9 + 3 · 2−a) : a ≥ 2}, which is a monotonic

image of N and so has order type ω. It is also bounded above by 5− log2 9 < 2 and

so not cofinal in T .

Finally, we consider the sets T4 and T5; we claim that both are order isomorphic

to S3 and hence to ω2, and both are cofinal in T . We will only explicitly treat the

case of T4, as T5 is similar. First observe that T4 is equal to the set

{2− log2(1 + 2−a + 2−b + 2−a−b) : 0 < a < b ∈ Z}.

As a and b go to infinity, this expression approaches 2, so T4 is cofinal in T . To see

that it has order type ω2, consider the map

2− log2(1 + 2−a + 2−b) 7→ 2− log2(1 + 2−a + 2−b + 2−a−b)

(where here b > a > 0). Let f(a, b) denote 2 − log2(1 + 2−a + 2−b) and g(a, b)

denote 2 − log2(1 + 2−a + 2−b + 2−a−b). Then it is straightforward to check that

f(a1, b1) > f(a2, b2) if and only if (a1, b1) > (a2, b2) lexicographically, which also is

true if and only if g(a1, b1) > g(a2, b2). Hence the map above, which sends f(a, b) to

g(a, b), is an order isomorphism, proving the claim. As mentioned above, the case of

T5 is similar.

Thus, by Proposition 4.5.4, T has order type ω2. And so DA ∩ (1, 2] has order

type at most ω2, and so DA ∩ [0, 2] has order type at most ω + ω2 = ω2. We also

already know it has order type at least ω2, so it has order type exactly ω2.

Also, the supremum of DA ∩ [0, 2] is 2, so for any r < 2, the set DA ∩ [0, r] is a

proper initial segment and so has order type strictly less than ω2.

Finally, note that if dδA(n)e = 2, then n must be A-stable, since otherwise, there

would be some k with δA(2kn) < 1; but ν2(n) ≥ 3 and ν2(2
kn) ≤ 2, so this is

impossible. By Theorem 4.7.1, all defects in DA ∩ [0, 1] are stable, and by the above,

all defects in DA ∩ (1, 2] are stable, so the stability part of the theorem follows.

4.7.3 Summing up: Lower bounds

So we can now sum up the lower bounds on fA(k) and fAst(k) as follows:

111

Theorem 4.7.4. For k a whole number, we have:

1. For 0 ≤ k ≤ 2, we have fA(k) = fAst(k) = k.

2. For 3 ≤ k ≤ 7, we have 2 < fA(k) ≤ fAst(k) ≤ k.

3. For 8 ≤ k ≤ 33, we have 3 < fA(k) ≤ fAst(k) ≤ k.

4. For k ≥ 34, we have log2(k + 1)− Cs < fA(k) ≤ fAst(k) ≤ k.

Proof. The upper bounds are just Corollary 4.6.7, so we focus on the lower bounds.

For k = 0, this follows as 0 ∈ D `. For k = 1, this is immediate from Theorem 4.7.1.

For k = 2, this is immediate from Theorem 4.7.3. Part (2) then follows as fA is strictly

increasing.

For part (3), observe that by Theorem 4.6.4 and Proposition 4.4.6, the order type

of DA∩[0, 3] is less than ω8, and so fA(8) > 3; the rest then follows as fA is increasing.

Finally, part (4) is just Corollary 4.6.7.

4.8 Concluding Remarks

In future papers we hope to prove better bounds on f `(k), f ∗(k), and their stable

versions. Meanwhile we conjecture:

Conjecture 4.8.1. (1) For k ≥ 0, f `(k) = f `st(k) = k.

(2) For k ≥ 0, f ∗(k) = f ∗st(k) = k.

We can say for a fact that there are certain sets of addition chains A for which we

know an analogue of Conjecture 4.8.1 holds; we could take A to be the set of addition

chains generated by the binary method. Then we would have DA = DA
st =

⋃
k≥1 Sk,

where Sk is as in Proposition 4.6.2. It is then easy to check that, for k ≥ 2, we have

Sk ⊆ (k−2, k−1) and then conclude that fA(k) = k. But this example is a triviality

and tells us nothing about the structure of addition chains.

So we ask:

Question 4.8.2. Assuming that Conjecture 4.8.1 holds, what conditions on A are

needed to ensure that Conjecture 4.8.1 holds when DA is used in place of D ` or D∗?

Does it hold when A is the set of Hansen chains, or the set of chains which are star

or quasi-star?

112

Chapter 5

Integer Complexity: Computational Methods and

Results

Abstract: Define ‖n‖ to be the complexity of n, the smallest number of ones

needed to write n using an arbitrary combination of addition and multiplication.

Define n to be stable if for all k ≥ 0, we have ‖3kn‖ = ‖n‖+ 3k. In Chapter 2,

we Zelinsky showed that for any n, there exists some K = K(n) such that 3Kn

is stable; however, the proof there provided no upper bound on K(n) or any

way of computing it. In this chapter, we describe an algorithm for computing

K(n), and thereby also show that the set of stable numbers is a computable

set. The algorithm is based on considering the defect of a number, defined

by δ(n) := ‖n‖ − 3 log3 n, building on the methods presented in Chapter 3.

As a side benefit, this algorithm also happens to allow fast evaluation of the

complexities of powers of 2; we use it to verify that ‖2k3`‖ = 2k+3` whenever k

and ` are not both zero and k ≤ 48, providing more evidence for the conjecture

that ‖2k3`‖ = 2k + 3` whenever k and ` are not both zero.

5.1 Introduction

The complexity of a natural number n is the least number of 1’s needed to write it

using any combination of addition and multiplication, with the order of the operations

specified using parentheses grouped in any legal nesting. For instance, n = 11 has a

complexity of 8, since it can be written using 8 ones as (1+1+1)(1+1+1)+1+1, but

not with any fewer. This notion was implicitly introduced in 1953 by Kurt Mahler

and Jan Popken [38]; they actually considered an inverse function, the size of the

largest number representable using k copies of the number 1. (More generally, they

considered the same question for representations using k copies of a positive real

number x.) Integer complexity was explicitly studied by John Selfridge, and was

later popularized by Richard Guy [29, 30]. Following J. Arias de Reyna [8] we will

denote the complexity of n by ‖n‖.

113

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n =
3

ln 3
lnn ≤ ‖n‖ ≤ 3

ln 2
lnn, n > 1.

The lower bound can be deduced from the result of Mahler and Popken, and was

explicitly proved by John Selfridge [29]. It is attained with equality for n = 3k for

all k ≥ 1. The upper bound can be obtained by writing n in binary and finding a

representation using Horner’s algorithm. It is not sharp, and the constant 3
ln 2

can be

improved for large n [52].

One can compute ‖n‖ via dynamic programming, since ‖1‖ = 1, and for n > 1,

one has

‖n‖ = min
a,b<n∈N

a+b=n or ab=n

‖a‖+ ‖b‖.

This yields an algorithm for computing ‖n‖ that runs in time Θ(n2); in the multi-

plication case, one needs to check a ≤
√
n, and, näıvely, in the addition case, one

needs to check a ≤ n/2. However, Srinivas and Shankar[44] showed that the upper

bound on the addition case case be improved, lowering the time required to O(nlog2 3),

by taking advantage of the inequality ‖n‖ ≥ 3 log3 n to rule out cases when a is too

large. Arias de Reyna and Van de Lune[9] took this further and showed that it could

be computed in time O(nα), where

α =
ln(362−10(30557189 + 21079056 3

√
3 + 14571397 3

√
9))

ln(21037)
< 1.231;

this remains the best known algorithm for computing ‖n‖ for general n.

The notion of integer complexity is similar in spirit but different in detail from the

better known measure of addition chain length, which has application to computation

of powers, and which is discussed in detail in Knuth [35, Sect. 4.6.3]. See also

Chapter 4 for some interesting analogies between them; we will discuss this further

in Section 5.1.3.

An obvious question about ‖n‖ is that of the complexity of powers. For k ≥ 1 it

is true that

‖nk‖ ≤ k‖n‖,

and for the case of n = 3 we even have equality, i.e., it is known that ‖3k‖ = 3k for

all k ≥ 1. However other values have a more complicated behavior. For instance,

powers of 5 do not work nicely, as ‖56‖ = 29 < 30 = 6 · ‖5‖. The behavior of powers

114

of 2 remains unknown; it has previously been verified [33] that

‖2k‖ = k‖2‖ = 2k for 1 ≤ k ≤ 39.

One may combine the known fact that ‖3k‖ = 3k for k ≥ 1, and the hope that

‖2k‖ = 2k for k ≥ 1, into the following conjecture:

Conjecture 5.1.1. For k, ` ≥ 0 and not both equal to 0,

‖2k3`‖ = 2k + 3`.

Such a conjecture is quite far from being proven; after all, it would require that

‖2k‖ = 2k for all k ≥ 1, which would in turn imply that

lim sup
n→∞

‖n‖
lnn
≥ 2

ln 2
;

at present, it is not even known that this limit is any greater than 3
ln 3

, i.e., that

‖n‖ � 3 log3 n. Indeed, some have suggested that ‖n‖ may indeed just be asymptotic

to 3 log3 n; see [29].

Nonetheless, in this chapter we provide some more evidence for this conjecture,

by proving:

Theorem 5.1.2. For k ≤ 48, and k and ` not both zero,

‖2k3`‖ = 2k + 3`.

This extends the results of [33] regarding numbers of the form 2k3`, as well as the

results of Chapter 2, which showed this for k ≤ 21. We prove this not by careful hand

analysis, as was done in Chapter 2, but by demonstrating, based on the methods of

Chapters 2 and 3, a new algorithm (Algorithm 10) for computing ‖2k‖ – which not

only runs much faster than existing algorithms, but is also capable of in addition

telling us whether or not, for the given k, ‖2k3`‖ = 2k+ 3` holds for all ` ≥ 0. Before

we go into its workings, however, let us take a moment to say a bit more about just

what it is that it does.

5.1.1 Stability and main result

The fact that ‖3k‖ = 3k holds for all k ≥ 1 might prompt one to ask whether in

general it is true that ‖3n‖ = ‖n‖ + 3. This is false for n = 1, but it does not seem

115

an unreasonable guess for n > 1. Nonetheless, this does not hold; the next smallest

counterexample is n = 107, where ‖107‖ = 16 but ‖321‖ = 18. Indeed, not only

do there exist n for which ‖3n‖ < ‖n‖ + 3, there are even n for which ‖3n‖ < ‖n‖;
one example is n = 4721323. Still, this guess can be rescued. Let us first make a

definition:

Definition 5.1.3. A number m is called stable if ‖3km‖ = 3k+ ‖m‖ holds for every

k ≥ 0. Otherwise it is called unstable.

In Chapter 2, we showed:

Theorem 5.1.4. For any natural number n, there exists K ≥ 0 such that 3Kn is

stable. That is to say, there exists a minimal K := K(n) such that for any k ≥ K,

‖3kn‖ = 3(k −K) + ‖3Kn‖.

This can be seen as a “rescue” of the incorrect guess that ‖3n‖ = ‖n‖+ 3 always.

With this theorem, it makes sense to define:

Definition 5.1.5. Given n ∈ N, define K(n), the stabilization length of n, to be the

smallest k such that 3kn is stable.

We can also define the notion of the stable complexity of n (see Chapter 3), which

is, intuitively, what the complexity of n would be “if n were stable”:

Definition 5.1.6. For a positive integer n, we define the stable complexity of n,

denoted ‖n‖st, to be ‖3kn‖ − 3k for any k such that 3kn is stable. This is well-

defined; if 3kn and 3`n are both stable, say with k ≤ `, then

‖3kn‖ − 3k = 3(k − `) + ‖3`n‖ − 3k = ‖3`n‖ − 3`.

Unfortunately, Chapter 2, while proving the existence of K(n), gave no upper

bound on K(n) or indeed any way of computing it. Certainly one cannot compute

whether or not n is stable simply by computing for all k the complexity of 3kn; one

can guarantee that n is unstable by such computations, but never that it is stable.

And it’s not clear that ‖n‖st, though it has been a useful object of study in Chapter 3,

can actually be computed. But in this chapter we prove:

Theorem 5.1.7. We have:

1. The function K(n), the stabilization length of n, is a computable function of n.

116

2. The function ‖n‖st, the stable complexity of n, is a computable function of n.

3. The set of stable numbers is a computable set.

It’s worth observing here that, strictly speaking, all three parts of this theorem

are equivalent. If one has an algorithm for computing K(n), then one may check

whether n is stable by checking whether K(n) = 0, and one may compute ‖n‖st by

computing ‖3K(n)n‖ by the usual methods and observing that

‖n‖st = ‖3K(n)n‖ − 3K(n).

Similarly, if one has an algorithm for computing ‖n‖st, one may compute whether n

is stable by checking if ‖n‖st = ‖n‖. Finally, if one has an algorithm for telling if n

is stable, one may determine K(n) by simply applying this algorithm to n, 3n, 9n,

. . . , until it returns a positive result, which must eventually occur. Such methods

for converting between K(n) and ‖n‖st may be quite slow, however. Fortunately,

the algorithm described here (Algorithm 8) will yield both K(n) and ‖n‖st at once,

averting such issues; and if one has K(n), checking whether n is stable is a one-step

process.

5.1.2 The defect, low-defect polynomials, truncation, and the
algorithm

Let us now turn our attention to the inner workings of these algorithms. Proving the

statement ‖n‖ = k has two parts; showing that ‖n‖ ≤ k, and showing that ‖n‖ ≥ k.

The former is, comparatively, the easy part, as it consists of just finding an expression

for n that uses at most k ones; the latter requires ruling out shorter expressions. The

simplest method for this is simply exhaustive search, which, as has been mentioned,

takes time Θ(n2), or time O(n1.24625) once some possibilities have been eliminated

from the addition case.

In this chapter, we take a different approach to lower bounding the quantity

‖n‖, one used earlier in Chapter 2; however, we make a number of improvements to

the method of Chapter 2 that both turn this method into an actual algorithm, and

frequently allow it to run in a reasonable time. The method is based on considering

the defect of n:

Definition 5.1.8. The defect of n, denoted δ(n) is defined by

δ(n) := ‖n‖ − 3 log3 n.

117

Let us further define:

Definition 5.1.9. For a real number s ≥ 0, the set As is the set of all natural

numbers with defect less than s.

Chapter 2 provided a method of, for any choice of α ∈ (0, 1), recursively building

up covering sets for the sets Aα, A2α, A3α, . . .; then, if for some n and k we can use

this to demonstrate that n /∈ Akα, then we have determined a lower bound on ‖n‖.
Chapter 3 improved on this by showing that the covering sets generated this way

have a tractable form. It showed that for any s ≥ 0, there is a finite set Ss of

multilinear polynomials, of a particular form called low-defect polynomials, such that

if δ(n) < s then n can be written as f(3k1 , . . . , 3kr)3kr+1 for some f ∈ Ss and some

k1, . . . , kr+1 ≥ 0. However, extraneous numbers could also be generated this way; not

every number represented this way would necessarily have defect less than s. This

makes it harder to demonstrate that n /∈ Akα. (It is technically possible to prove

Theorem 5.1.7 based only on the methods of Chapter 3, without the new methods

here; however, empirically, the algorithm obtained this way is too slow to be practical,

and the new methods here are of independent interest regardless. See Section 5.1.3

and Appendix C.)

The innovation in this chapter is that we introduce a way of “truncating” a low-

defect polynomial f to a given defect s, though this replaces the one polynomial f by

a finite set of low-defect polynomials {g1, . . . , gk}. If we truncate every polynomial in

the set Ss to the defect s, we obtain a set Ts of low-defect polynomials so that for any

natural number n, δ(n) < s if and only if n = f(3k1 , . . . , 3kr)3kr+1 for some f ∈ Ts and

some k1, . . . , kr+1. That is to say, we are no longer merely covering the set Ar, but

representing it exactly. Indeed, stronger statements are true; see Theorem 5.5.9. This

remedies many of the deficiencies of attempting to apply the methods of Chapter 3

directly, and also leads to algorithms which can be applied in practice (e.g., to prove

Theorem 5.1.2).

In brief, the algorithm works as follows: First, we choose a step size α. We

start with a set of low-defect polynomials representing Aα, and apply the method of

Chapter 3 to build up sets representing A2α, A3α, . . .; at each step, we use truncation to

ensure we are representing the set Aiα exactly and not including extraneous elements.

Then we check whether or not n ∈ Aiα; if it is not, we continue on to A(i+1)α. If it

is, then we have a representation n = f(3k1 , . . . , 3kr)3kr+1 , and this gives us an upper

bound on ‖n‖ – indeed, by Theorem 5.5.9, we can find a shortest representation for

n in this way, and so it gives us ‖n‖ exactly.

118

This is, strictly speaking, a little different than what was described above, in that

it does not involve directly getting a lower bound on ‖n‖ from the fact that n /∈ Aiα.

However, this can be used too, so long as we know in advance an upper bound on

‖n‖. For instance, this is quite useful when n = 2k (for k ≥ 1), as then we know

that ‖n‖ ≤ 2k, and hence that δ(n) ≤ kδ(2). So we can use the method of the above

paragraph, but stop early, once we have covered defects up to kδ(2) − 1. If we get

a hit within that time, then we have found a shortest representation for n = 2k.

Conversely, if n is not detected, then we know that we must have

δ(2k) > kδ(2)− 1,

and hence that

‖2k‖ > 2k − 1,

i.e., ‖2k‖ = 2k, thus verifying that the obvious representation is the best possible.

Again, though we have illustrated it here with powers of 2, this method can be used

whenever we know in advance an upper bound on ‖n‖; see Appendix C.

Now, so far we’ve discussed using these methods to compute ‖n‖, but the more

interesting application is Theorem 5.1.7, i.e., using them to compute K(n) and ‖n‖st.
In this case, at each step, instead of checking whether there is some f ∈ Tiα such that

n = f(3k1 , . . . , 3kr)3kr+1 , we check whether is some f ∈ Tiα and some ` such that

3`n = f(3k1 , . . . , 3kr)3kr+1 .

It is not immediately obvious that this is possible, since näıvely we would need to

check arbitrarily large `, but Lemma 5.7.1 allows us to do this while checking only

finitely many `. Once we have such a detection, we can use the value of ` to determine

K(n), and the representation of 3` obtained this way to determine ‖3K(n)n‖ and hence

‖n‖st. In addition, if we know in advance ‖n‖ ≤ k, we can use the same trick as above

to sometimes cut the computation short and conclude not only that ‖n‖ = k but also

that n is stable.

The algorithms here can be used for more purposes as well; see Theorem 5.8.2 for

a further application of them.

5.1.3 Discussion

Many of the algorithms described here are parameterized, in that they require a

choice of a “step size” α ∈ (0, 1). In the author’s implementation, α is always taken

119

to be δ(2) = 0.107 . . ., and some precomputations have been made based on this

choice. See Appendix C for more on this. Below, when we discuss the computational

complexity of the algorithms given here, we are assuming a fixed choice of α. It is

possible that the value of α affects the time complexity of these algorithms. One

could also consider what happens when α is considered as an input to the algorithm,

so that one cannot do pre-computations based on the choice of α. (In this case we

should really restrict the form of α so that the question makes sense, for instance to

α = p − q log3 n, with n a natural number and p, q ∈ Q.) But we will avoid these

issues for now, and assume for the rest of this section that α = δ(2) unless otherwise

specified. Two of the algorithms here also require first choosing an upper bound L

on the input ‖n‖, which may be∞. We will assume here the simplest case, where we

always pick L =∞.

Note that we do not actually conduct here a formal analysis of the time complexity

of Algorithm 8 or Algorithm 10. The statement that Algorithm 10 is much faster than

existing methods for computing ‖2k‖ is an empirical one. The speedup is a dramatic

one, though; for instance, J. Iraids’s computation of ‖1012‖ required about 3 weeks on

a supercomputer, although he used the Θ(n2)-time algorithm rather than any of the

improvements [32]; whereas computing ‖248‖ via Algorithm 10 required only around

20 hours on the author’s laptop computer. Of course, Iraids did not just compute

‖1012‖, but in fact computed ‖n‖ for all n ≤ 1012; but the comparison is not an unfair

one, as all previous methods for computing ‖n‖ require computing ‖m‖ for all m ≤ n.

Still, it is worth noting that, empirically, it seems that increasing k by one ap-

proximately doubles the run time of Algorithm 10. This suggests that perhaps Algo-

rithm 10 runs in time O(2k), which would be better than the O(21.231k) bound coming

from applying existing methods [9] to compute the complexity of ‖2k‖.
Note that for Algorithm 8, the run time seems to be determined more by the size

of δst(n) (or δ(n) for Algorithm 9), rather than the size of n, since it seems that most

of the work is in building the sets of low-defect polynomials, rather than checking if n

is 3-represented. For this reason, computing ‖n‖ via Algorithm 9 is frequently much

slower than using existing methods, even though it is much faster for powers of 2.

Note that strictly speaking, δ(n) can be bounded in terms of n, since

δ(n) ≤ 3 log2 n− 3 log3 n,

but as mentioned earlier, this may be a substantial overestimate. So it is worth asking

the question:

120

Question 5.1.10. What is the time complexity of Algorithm 10, for computing K(2k)

and ‖2k‖st? Of Algorithm 8 (with L = ∞), for computing K(n) and ‖n‖st? Of

Algorithm 9 (with L = ∞), for computing the values of ‖3kn‖ for a given n and all

k ≥ 0? What if L may be finite? How do these depend on the parameter α? What if

α is an input?

Further worth noting is that although we have now given a means to compute

K(n), we have not provided any explicit upper bound on it. The same is true for the

quantity

∆(n) := ‖n‖ − ‖n‖st,

which is another way of measuring “how unstable” the number n is, and which is

also now computable due to Theorem 5.1.7. Nor do we have any reliable method of

generating unstable numbers with which to demonstrate lower bounds.

Indeed, empirically, large instabilities – measured either by K(n) or by ∆(n) –

seem to be rare. Be warned, this statement is not based on running Algorithm 8

on many numbers to determine their stability, as that is quite slow in general, but

rather on simply computing ‖n‖ for n ≤ 315 and then checking ‖n‖, ‖3n‖, ‖9n‖,. . . ,

and guessing that n is stable if no instability is detected before the data runs out, a

method that can only ever put lower bounds on K(n) and ∆(n), never upper bounds.

Still, numbers that are detectably unstable at all seem to be somewhat rare, although

they still seem to make up a positive fraction of all natural numbers; namely, around

3%. Numbers that are more than merely unstable – having K(n) ≥ 2 or ∆(n) ≥ 2 –

are yet rarer.

The largest lower bounds on K(n) or ∆(n) for a given n encountered based on

these computations are n = 4721323, which, as mentioned earlier, has ‖3n‖ < ‖n‖
and thus ∆(n) ≥ 4; and 17 numbers, the smallest of which is n = 3643, which have

‖35n‖ < ‖34n‖ + 3 and thus K(n) ≥ 5. Finding n where both K(n) and ∆(n) are

decently large is hard; for instance, these computations did not turn up any n for

which it could be seen that both K(n) ≥ 3 and ∆(n) ≥ 3. (See Table 5.1 for more.)

It’s not even clear whether K(n) or ∆(n) can get arbitrarily large, or are bounded

by some finite constant, although there’s no clear reason why the latter would be so.

Still, this is worth pointing out as a question:

Question 5.1.11. What is the natural density of the set of unstable numbers? What

is an explicit upper bound on K(n), or on ∆(n)? Can K(n) and ∆(n) get arbitrarily

large, or are they bounded?

121

Table 5.1: Numbers that seem to have unusual drop patterns. Here, the “drop
pattern” of n is the list of values δ(3kn)−δ(3k+1n), or equivalently ‖3kn‖−‖3k+1n‖+
3, up until the point where this is always zero. This table is empirical, based on a
computation of ‖n‖ for n ≤ 315; it’s possible these numbers have later drops further
on. Numbers which are divisible by 3 are not listed.

Drop pattern Numbers with this pattern
4 4721323
1, 2 1081079
2, 1 203999, 1328219
1, 0, 0, 1 153071, 169199

Further questions along these lines suggest themselves, but these questions seem

difficult enough, so we will stop this line of inquiry there for now.

It is worth noting here that, strictly speaking, it is possible to prove Theorem 5.1.7

using algorithms based purely on the methods of Chapter 3, without actually using

this chapter’s main innovation, the method of truncation. Of course, one cannot

simply remove the truncation step from the algorithms here and get correct answers;

other checks are necessary to compensate. See Appendix C for a brief discussion

of this. However, while this is sufficient to prove Theorem 5.1.7, the algorithms

obtained this way are simply too slow to be of use in practice. And without the

method of truncation, one cannot prove Theorem 5.5.9 or write Algorithm 6, which are

interesting and useful in their own right. For instance, proving Theorem 5.8.2 would

be quite difficult without Algorithm 6. We will demonstrate further applications of

the Theorem 5.8.2 and the method of truncation in future papers [4, 6].

We can also ask about the computational complexity of computing these functions

in general, rather than just the specific algorithms here. As noted above, the best

known algorithm for computing ‖n‖ takes time O(n1.24625). It is also known[8] that

the problem “Given n and k in binary, is ‖n‖ ≤ k?” is in the class NP , because

the size of a witness is O(log n). (This problem is not known to be NP -complete.)

However, it’s not clear whether the problem “Given n and k in binary, is ‖n‖st ≤ k?”

is in the class NP , because there’s no obvious bound on the size of a witness. It

is quite possible that it could be proven to be in NP , however, if an explicit upper

bound could be obtained on K(n).

We can also consider the problem of computing the defect ordering, i.e., “Given

n1 and n2 in binary, is δ(n1) ≤ δ(n2)?”; the significance of this problem is that the set

of all defects is in fact a well-ordered set with order type ωω, as detailed in Chapter 3.

122

This problem lies in ∆P
2 in the polynomial hierarchy (see Section 3.1.4. In Chapter 3

we also defined the stable defect of n:

Definition 5.1.12. The stable defect of n, denoted δst(n), is

δst(n) := ‖n‖st − 3 log3 n.

(We will review the stable defect and its properties in Section 5.2.1.) Thus we

get the problem of, “Given n1 and n2 in binary, is δst(n1) ≤ δst(n2)?” The image of

δst is also well-ordered with order type ωω, but until now it was not known that this

problem is computable. But Theorem 5.1.7 shows that it is, and so we can ask about

its complexity. Again, due to a lack of bounds on K(n), it’s not clear that this lies

in ∆P
2 .

We can also ask about the complexity of computing K(n), or ∆(n) (which, con-

ceivably, could be easier than ‖n‖ or ‖n‖st, though this seems unlikely), or, perhaps

most importantly, of computing a set Ts for a given s ≥ 0. Note that in this last

case, it need not be the set Ts found by Algorithm 6 here; we just want any set

satisfying the conclusions of Theorem 5.5.9 – a good covering of Bs, as we call it here

(see Definition 5.5.10). Of course, we must make a restriction on the input for this

last question, as one cannot actually take arbitrary real numbers as input; perhaps it

would be appropriate to restrict to s of the form

s ∈ {p− q log3 n : p, q ∈ Q, n ∈ N}.

We summarize:

Question 5.1.13. What is the complexity of computing ‖n‖? Of ‖n‖st? Of the

difference ∆(n)? Of the defect ordering δ(n1) ≤ δ(n2)? Of the stable defect ordering

δst(n1) ≤ δst(n2)? Of the stabilization length K(n)?

Question 5.1.14. Given s = p − q log3 n, with p, q ∈ Q and n ∈ N, what is the

complexity of computing a good covering Ts of Bs?

5.2 The defect, stability, and low-defect polynomials

In this section we review the results of Chapters 2 and 3 regarding the defect δ(n),

the stable complexity ‖n‖st and stable defect δst(n), and low-defect polynomials.

123

5.2.1 The defect and stability

First, some basic facts about the defect:

Theorem 5.2.1. We have:

1. For all n, δ(n) ≥ 0.

2. For k ≥ 0, δ(3kn) ≤ δ(n), with equality if and only if ‖3kn‖ = 3k + ‖n‖. The

difference δ(n)− δ(3kn) is a nonnegative integer.

3. A number n is stable if and only if for any k ≥ 0, δ(3kn) = δ(n).

4. If the difference δ(n)− δ(m) is rational, then n = m3k for some integer k (and

so δ(n)− δ(m) ∈ Z).

5. Given any n, there exists k such that 3kn is stable.

6. For a given defect α, the set {m : δ(m) = α} has either the form {n3k : 0 ≤
k ≤ L} for some n and L, or the form {n3k : 0 ≤ k} for some n. This latter

occurs if and only if α is the smallest defect among δ(3kn) for k ∈ Z.

7. If δ(n) = δ(m), then ‖n‖ = ‖m‖ (mod 3).

8. δ(1) = 1, and for k ≥ 1, δ(3k) = 0. No other integers occur as δ(n) for any n.

9. If δ(n) = δ(m) and n is stable, then so is m.

Proof. Parts (1) through (8), excepting part (3), are just Theorem 3.2.1. Part (3) is

Proposition 2.2.4, and part (9) is Proposition 3.3.1.

Also, although it will not be a focus of this chapter, we will sometimes want to

consider the set of all defects:

Definition 5.2.2. We define the defect set D to be {δ(n) : n ∈ N}, the set of all

defects.

In Chapter 3 we also defined the notion of a stable defect :

Definition 5.2.3. We define a stable defect to be the defect of a stable number.

Because of part (9) of Theorem 5.2.1, this definition makes sense; a stable defect

α is not just one that is the defect of some stable number, but one for which any

n with δ(n) = α is stable. Stable defects can also be characterized by the following

proposition from Chapter 3:

124

Proposition 5.2.4. A defect α is stable if and only if it is the smallest β ∈ D such

that β ≡ α (mod 1).

We can also define the stable defect of a given number, which we denote δst(n).

(We actually already defined this in Definition 5.1.12, but let us disregard that for

now and give a different definition; we will see momentarily that they are equivalent.)

Definition 5.2.5. For a positive integer n, define the stable defect of n, denoted

δst(n), to be δ(3kn) for any k such that 3kn is stable. (This is well-defined as if 3kn

and 3`n are stable, then k ≥ ` implies δ(3kn) = δ(3`n), and so does ` ≥ k.)

Note that the statement “α is a stable defect”, which earlier we were thinking

of as “α = δ(n) for some stable n”, can also be read as the equivalent statement

“α = δst(n) for some n”.

We then have the following facts relating the notions of ‖n‖, δ(n), ‖n‖st, and

δst(n):

Proposition 5.2.6. We have:

1. δst(n) = mink≥0 δ(3
kn)

2. δst(n) is the smallest α ∈ D such that α ≡ δ(n) (mod 1).

3. ‖n‖st = mink≥0(‖3kn‖ − 3k)

4. δst(n) = ‖n‖st − 3 log3 n

5. δst(n) ≤ δ(n), with equality if and only if n is stable.

6. ‖n‖st ≤ ‖n‖, with equality if and only if n is stable.

Proof. These are just Propositions 3.3.5, 3.3.7, and 3.3.8.

5.2.2 Low-defect polynomials and low-defect pairs

As has been mentioned in Section 5.1.2, we are going to represent the set Ar by

substituting in powers of 3 into certain multilinear polynomials we call low-defect

polynomials. We will associate with each one a “base complexity” to from a low-

defect pair. In this section we will review the basic properties of these polynomials.

First, their definition:

Definition 5.2.7. We define the set P of low-defect pairs as the smallest subset of

Z[x1, x2, . . .]× N such that:

125

1. For any constant polynomial k ∈ N ⊆ Z[x1, x2, . . .] and any C ≥ ‖k‖, we have

(k, C) ∈P.

2. Given (f1, C1) and (f2, C2) in P, we have (f1 ⊗ f2, C1 + C2) ∈P, where, if f1

is in r1 variables and f2 is in r2 variables,

(f1 ⊗ f2)(x1, . . . , xr1+r2) := f1(x1, . . . , xr1)f2(xr1+1, . . . , xr1+r2).

3. Given (f, C) ∈P, c ∈ N, and D ≥ ‖c‖, we have (f ⊗x1 + c, C+D) ∈P where

⊗ is as above.

The polynomials obtained this way will be referred to as low-defect polynomials.

If (f, C) is a low-defect pair, C will be called its base complexity. If f is a low-

defect polynomial, we will define its absolute base complexity, denoted ‖f‖, to be the

smallest C such that (f, C) is a low-defect pair. We will also associate to a low-defect

polynomial f the augmented low-defect polynomial

f̂ = f ⊗ x1

Note that the degree of a low-defect polynomial is also equal to the number of

variables it uses; see Proposition 5.2.8. We will often refer to the “degree” of a low-

defect pair (f, C); this refers to the degree of f . Also note that augmented low-defect

polynomials are never low-defect polynomials; as we will see in a moment (Propo-

sition 5.2.8), low-defect polynomials always have nonzero constant term, whereas

augmented low-defect polynomials always have zero constant term.

Note that we do not really care about what variables a low-defect polynomial (or

pair) is in – if we permute the variables of a low-defect polynomial or replace them

with others, we will still regard the result as a low-defect polynomial. From this

perspective, the meaning of f ⊗ g could be simply regarded as “relabel the variables

of f and g so that they do not share any, then multiply f and g”. Helpfully, the ⊗
operator is associative not only with this more abstract way of thinking about it, but

also in the concrete way it was defined above.

In Chapter 3 we proved the following propositions about low-defect pairs:

Proposition 5.2.8. Suppose f is a low-defect polynomial of degree r. Then f is

a polynomial in the variables x1, . . . , xr, and it is a multilinear polynomial, i.e., it

has degree 1 in each of its variables. The coefficients are non-negative integers. The

constant term is nonzero, and so is the coefficient of x1 . . . xr, which we will call the

leading coefficient of f .

126

Proposition 5.2.9. If (f, C) is a low-defect pair of degree r, then

‖f(3n1 , . . . , 3nr)‖ ≤ C + 3(n1 + . . .+ nr).

and

‖f̂(3n1 , . . . , 3nr+1)‖ ≤ C + 3(n1 + . . .+ nr+1).

Proof. This is a combination of Proposition 3.4.5 and Corollary 3.4.12.

Because of this, it makes sense to define:

Definition 5.2.10. Given a low-defect pair (f, C) (say of degree r) and a number N ,

we will say that (f, C) efficiently 3-represents N if there exist nonnegative integers

n1, . . . , nr such that

N = f(3n1 , . . . , 3nr) and ‖N‖ = C + 3(n1 + . . .+ nr).

We will say (f̂ , C) efficiently 3-represents N if there exist n1, . . . , nr+1 such that

N = f̂(3n1 , . . . , 3nr+1) and ‖N‖ = C + 3(n1 + . . .+ nr+1).

More generally, we will also say f 3-represents N if there exist nonnegative integers

n1, . . . , nr such that N = f(3n1 , . . . , 3nr). and similarly with f̂ .

Note that if (f, C) (or (f̂ , C)) efficiently 3-represents N , then (f, ‖f‖) (respec-

tively, (f̂ , ‖f‖) efficiently 3-represents N , which means that in order for (f, C) (or

(f̂ , C) to 3-represent anything efficiently at all, we must have C = ‖f‖. However

it is still worth using low-defect pairs rather than just low-defect polynomials since

we may not always know ‖f‖. In our applications here, where we want to compute

things, taking the time to compute ‖f‖, rather than just making do with an upper

bound, may not be desirable.

For this reason it makes sense to use “f efficiently 3-represents N” to mean “some

(f, C) efficiently 3-represents N” or equivalently “(f, ‖f‖) efficiently 3-reperesents

N”. Similarly with f̂ .

In keeping with the name, numbers 3-represented by low-defect polynomials, or

their augmented versions, have bounded defect. Let us make some definitions first:

Definition 5.2.11. Given a low-defect pair (f, C), we define δ(f, C), the defect of

(f, C), to be C − 3 log3 a, where a is the leading coefficient of f . When we are not

concerned with keeping track of base complexities, we will use δ(f) to mean δ(f, ‖f‖).

127

Definition 5.2.12. Given a low-defect pair (f, C) of degree r, we define

δf,C(n1, . . . , nr) = C + 3(n1 + . . .+ nr)− 3 log3 f(3n1 , . . . , 3nr).

Then we have:

Proposition 5.2.13. Let (f, C) be a low-defect pair of degree r, and let n1, . . . , nr+1

be nonnegative integers.

1. We have

δ(f̂(3n1 , . . . , 3nr+1)) ≤ δf,C(n1, . . . , nr)

and the difference is an integer.

2. We have

δf,C(n1, . . . , nr) ≤ δ(f, C)

and if r ≥ 1, this inequality is strict.

Proof. This is a combination of Proposition 3.4.9 and Corollary 3.4.14.

In fact, not only is δ(f, C) an upper bound on the values of δf,C , it is the least

upper bound:

Proposition 5.2.14. Let (f, C) be a low-defect pair, say of degree r. Then δf,C is a

strictly increasing function in each variable, and

δ(f, C) = sup
k1,...,kr

δf,C(k1, . . . , kr).

Proof. We can define g, the reverse polynomial of f :

g(x1, . . . , xr) = x1 . . . xrf(x−11 , . . . , x−1r).

So g is a multilinear polynomial in x1, . . . , xr, with the coefficient of
∏

i∈S xi in g being

the coefficient of
∏

i/∈S xi in f . By Proposition 5.2.8, f has nonnegative coefficients,

so so does g; since the constant term of f does not vanish, the x1 . . . xr term of g does

not vanish. Hence g is strictly increasing in each variable.

Then

δf,C(k1, . . . , kr) = C + 3(k1 + . . .+ kr)− 3 log3 f(3k1 , . . . , 3kr)

= C − 3 log3

f(3k1 , . . . , 3kr)

3k1+...+kr
= C − 3 log3 g(3−k1 , . . . , 3−kr)

128

which is strictly increasing in each variable, as claimed. Furthermore, if a is the

leading coefficient of f , then it is also the constant term of g, and so

inf
k1,...,kr

g(3−k1 , . . . , 3−kr) = a.

Thus

sup
k1,...,kr

δf,C(k1, . . . , kr) = C − 3 log3 a = δ(f, C).

With this, we have the basic properties of low-defect polynomials.

5.2.3 Inductively building up numbers of small defect

Now let us discuss the “building-up” method from Chapters 2 and 3 that forms one-

half the core of the algorithm. The new “filtering-down” half, truncation, will have

to wait for Section 5.5.

First, we will need the idea of a leader :

Definition 5.2.15. A natural number n is called a leader if it is the smallest number

with a given defect. By part (6) of Theorem 5.2.1, this is equivalent to saying that

either 3 - n, or, if 3 | n, then δ(n) < δ(n/3), i.e., ‖n‖ < 3 + ‖n/3‖.

Let us also define:

Definition 5.2.16. For any real r ≥ 0, define the set of r-defect numbers Ar to be

Ar := {n ∈ N : δ(n) < r}.

Define the set of r-defect leaders Br to be

Br := {n ∈ Ar : n is a leader}.

These sets are related by the following proposition from Chapter 3:

Proposition 5.2.17. For every n ∈ Ar, there exists a unique m ∈ Br and k ≥ 0

such that n = 3km and δ(n) = δ(m); then ‖n‖ = ‖m‖+ 3k.

Because of this, we can focus on building up Br, and derive Ar from it.

In order to inductively build up the sets Ar and Br, we need a base case. Fortu-

nately, Chapter 2 provides one in the form of the following theorem, determining all

numbers with defect less than 1 and their complexities:

129

Theorem 5.2.18. For every α with 0 < α < 1, the set of leaders Bα is a finite set.

More specifically, the list of n with δ(n) < 1 is as follows:

1. 3` for ` ≥ 1, of complexity 3` and defect 0

2. 2k3` for 1 ≤ k ≤ 9, of complexity 2k + 3` and defect kδ(2)

3. 5 · 2k3` for k ≤ 3, of complexity 5 + 2k + 3` and defect δ(5) + kδ(2)

4. 7 · 2k3` for k ≤ 2, of complexity 6 + 2k + 3` and defect δ(7) + kδ(2)

5. 19 · 3` of complexity 9 + 3` and defect δ(19)

6. 13 · 3` of complexity 8 + 3` and defect δ(13)

7. (3k + 1)3` for k > 0, of complexity 1 + 3k + 3` and defect 1− 3 log3(1 + 3−k)

Strictly speaking, we do not necessarily need this theorem to the same extent

as Chapter 3; we only need it if we want to be able to choose step sizes α with α

arbitrarily close to 1. In Chapter 3, this was necessary to keep small the degrees of

the polynomials; larger steps translates into fewer steps, which translates into lower

degree. However, with the method of truncation, we can limit the degree without

needing large steps – see Corollary 5.4.24 – allowing us to keep α small if we so choose.

For instance, in the author’s implementation, we always use α = δ(2). Nonetheless,

one may wish to use larger α, so this proposition is worth noting.

Now that we have the base case, we need the inductive step. In order to state it,

we’ll first need some definitions:

Definitions 5.2.19. We say n is most-efficiently represented as ab if n = ab and

‖n‖ = ‖a‖+ ‖b‖, or as a+ b if n = a+ b and ‖n‖ = ‖a‖+ ‖b‖. In the former case we

will also say that n = ab is a good factorization of n. We say n is solid if it cannot be

written most-efficiently as a+b for any a and b. We say n is m-irreducible if it cannot

be written most-efficiently as ab for any a and b. And for a real number α ∈ (0, 1), we

define the set Tα to consist of 1 together with those m-irreducible numbers n which

satisfy
1

n− 1
> 3

1−α
3 − 1

and do not satisfy ‖n‖ = ‖n− b‖+ ‖b‖ for any solid numbers b with 1 < b ≤ n/2.

Note that for any α ∈ (0, 1), the set Tα is a finite set, due to the upper bound on

the size of numbers n ∈ Tα.

Let us make one more definition:

130

Definition 5.2.20. For r ≥ 0, a finite set S of low-defect pairs will be called a

covering set for Br if every n ∈ Br can be efficiently 3-represented by some pair

in S. (And hence every n ∈ Ar can be efficiently represented by some (f̂ , C) with

(f, C) ∈ S.)

Now we can state the theorem. The theorem provides fives possibilities; three

“generic cases” (1 through 3), and two “exceptional cases” (4 and 5).

Theorem 5.2.21. Suppose that 0 < α < 1 and that k ≥ 1. Further suppose that

S1,α,S2,α, . . . ,Sk,α are covering sets for Bα, B2α, . . . ,Skα, respectively. Then we can

build a covering set Sk+1,α for B(k+1)α as follows:

1. If k + 1 > 2, then for (f, C) ∈ Si,α and (g,D) ∈ Sj,α with 2 ≤ i, j ≤ k and

i+ j = k + 2 we include (f ⊗ g, C +D) in Sk+1,α;

while if k + 1 = 2, then for (f1, C1), (f2, C2), (f3, C3) ∈ S1,α, we include (f1 ⊗
f2, C1 + C2) and (f1 ⊗ f2 ⊗ f3, C1 + C2 + C3) in S2,α.

2. For (f, C) ∈ Sk,α and any solid number b with ‖b‖ < (k + 1)α + 3 log3 2, we

include (f ⊗ x1 + b, C + ‖b‖) in Sk+1,α.

3. For (f, C) ∈ Sk,α, any solid number b with ‖b‖ < (k + 1)α + 3 log3 2, and any

v ∈ Bα, we include (v(f ⊗ x1 + b), C + ‖b‖+ ‖v‖) in Sk+1,α.

4. For all n ∈ Tα, we include (n, ‖n‖) in Sk+1,α.

5. For all n ∈ Tα and v ∈ Bα, we include (vn, ‖vn‖) in Sk+1,α.

Proof. While this did not appear as an explicit theorem in Chapter 3, it is proved in

the proof of Theorem 3.4.10.

So by applying this and Theorem 5.2.18, we can inductively build up a covering

set for any Br. By choosing α arbitrarily close to 1, in Chapter 3 we obtained the

following result:

Theorem 5.2.22. For any real r ≥ 0, there exists a finite covering set Sr for Br.

Furthermore, we can choose Sr such that each (f, C) ∈ Sr has degree at most brc.

However, as has been noted earlier, in this chapter we will show that with the

method of truncation, one can obtain the condition on degrees without needing to

take α arbitrarily close to 1.

131

5.3 Further notes on stabilization and stable complexity

Before we continue, let’s make a few more notes on the stabilization length K(n) and

the stable complexity ‖n‖st, now that we have the ability to compute them. We begin

with the following inequality:

Proposition 5.3.1. For natural numbers n1 and n2, ‖n1n2‖st ≤ ‖n1‖st + ‖n2‖st.

Proof. Choose k1, k2, and K such that k1+k2 = K, both 3kini are stable, and 3Kn1n2

is also stable. Then

‖n1n2‖st = ‖3Kn1n2‖ − 3K ≤ ‖3k1n1‖+ ‖3k2n2‖ − 3(k1 + k2) = ‖n1‖st + ‖n2‖st.

Unfortunately, the analogous inequality for addition does not hold; for instance,

‖2‖st = 2 > 0 = ‖1‖st + ‖1‖st;

more examples can easily be found.

As was mentioned in Section 5.1.3, we can measure the instability of the number

n by the quantity ∆(n), defined as

∆(n) = ‖n‖ − ‖n‖st = δ(n)− δst(n).

We’ve also already introduced the term “good factorization” to mean a factoriza-

tion N = n1 · . . . ·nk with ‖N‖ = ‖n1‖+ . . .+‖nk‖. We can thus introduce a measure

of how bad a factorization is – and, due to Proposition 5.3.1, a stabilized version:

Definitions 5.3.2. Let n1, . . . , nk be positive integers, and let N be their product.

We define κ(n1, . . . , nk) to be the difference ‖n1‖ + . . . + ‖nr‖ − ‖N‖. Similarly we

define κst(n1, . . . , nk) to be the difference ‖n1‖st + . . .+ ‖nk‖st − ‖N‖st.
If κ(n1, . . . , nk) = 0, we will say that the factorization N = n1 · . . . · nk is a good

factorization. If κst(n1, . . . , nk) = 0, we will say that the factorization N = n1 · . . . ·nk
is a stably good factorization.

These definitions lead to the following easily-proved but useful equation:

Proposition 5.3.3. Let n1, . . . , nk be natural numbers with product N . Then

∆(N) + κ(n1, . . . , nk) =
k∑
i=1

∆(ni) + κst(n1, . . . , nk).

132

Proof. Both sides are equal to the difference
∑k

i=1 ‖ni‖ − ‖N‖st.

The usefulness of this equation comes from the fact that all the summands are

nonnegative integers. For instance, we can obtain the following implications from it:

Corollary 5.3.4. Let n1, . . . , nk be natural numbers with product N ; consider the

factorization N = n1 · . . . · nk. Then:

1. If N is stable and the factorization is good, then the ni are stable.

2. If the ni are stable and the factorization is stably good, then N is stable.

3. If the factorization is stably good, then K(N) ≤
∑

iK(ni).

(Part (1) of this proposition is the same as the earlier Proposition 2.3.7.)

Proof. For part (1), by Proposition 5.3.3, if ∆(N) = κ(n1, . . . , nk) = 0, then we

must have that ∆(ni) = 0 for all i, i.e., the ni are all stable. For part (2), again

by Proposition 5.3.3, if κst(n1, . . . , nk) = 0 and ∆(ni) = 0 for all i, then we must

have ∆(N) = 0, i.e., N is stable. Finally, for part (3) let Ki = K(Ni), and let

K = K1 + . . .+Kr. Then
∏

i(3
Kini) = 3Kn. Now by hypothesis,

κst(3
K1n1, . . . , 3

Krnr) = κst(n1, . . . , nr) = 0,

and furthermore each 3Kini is stable. Hence by part (2), we must also have that 3KN

is stable, that is, that K(N) ≤ K = K(N1) + . . .+K(Nr).

Having noted this, let us continue on towards the method of truncation. First,

though, we will need to better understand the structure of low-defect polynomials.

5.4 Low-defect expressions, the nesting ordering, and struc-
ture of low-defect polynomials

In this section we will go further into the structure of low-defect polynomials. In

order to do this, we will investigate the expressions that give rise to them. That is

to say, if we have a low-defect polynomial f , it was constructed according to rules

(1)–(3) in Definition 5.2.7; each of these rules though gives a way not just of building

up a polynomial, but an expression. For instance, we can build up the polynomial

4x+2 by using rule (1) to make 2, then using rule (3) to make 2x+1, then using rule

(2) to make 2(2x+ 1) = 4x+ 2. The polynomial 4x+ 2 itself does not remember its

history, of course; but perhaps we want to remember its history – in which we do not

133

want to consider the polynomial 4x+ 2, but rather the expression 2(2x+ 1), which is

different from the expression 4x+ 2, which has a different history.

Strictly speaking, it is possible to prove many of the theorems about low-defect

polynomials in this and the next section purely by structural induction, using just

the rules (1)–(3) in Definition 5.2.7. But introducing low-defect expressions is more

enlightening; it makes it clear why, for instance, the nesting ordering (see Defini-

tion 5.4.11) takes the form of a forest.

So, with that, we define:

Definition 5.4.1. A low-defect expression is defined to be a an expression in positive

integer constants, +, ·, and some number of variables, constructed according to the

following rules:

1. Any positive integer constant by itself forms a low-defect expression.

2. Given two low-defect expressions using disjoint sets of variables, their product

is a low-defect expression. If E1 and E2 are low-defect expressions, we will use

E1 ⊗ E2 to denote the low-defect expression obtained by first relabeling their

variables so that E1 and E2 have no variables in common and then multiplying

the resulting expressions.

3. Given a low-defect expression E, a positive integer constant c, and a variable

x not used in E, the expression E · x + c is a low-defect expression. (We can

write E ⊗ x+ c if we do not know in advance that x is not used in E.)

And, naturally, we also define:

Definition 5.4.2. We define an augmented low-defect expression to be an expression

of the form E·x, where E is a low-defect expression and x is a variable not appearing in

E. If E is a low-defect expression, we also denote the augmented low-defect expression

E ⊗ x by Ê.

It is clear from the definitions that evaluating a low-defect expression yields a low-

defect polynomial, and that evaluating an augmented low-defect expression yields an

augmented low-defect polynomial.

5.4.1 Equivalence and the tree representation

We can helpfully represent a low-defect expression by a rooted tree, with the vertices

and edges both labeled by positive integers. Note, some information is lost in this

134

Figure 5.1: Low-defect tree for the expression 2((73(3x1 + 1)x2 + 6)(2x3 + 1)x4 + 1).

2

1

73

3

1

6

2

1

1

representation – but, as it happens, nothing we will care about; it turns out that

while knowing some of the history of a low-defect polynomial is helpful, knowing the

full expression it originated from is more than is necessary. The tree representation

is frequently more convenient to work with than an expression, as it does away with

such problems as, for instance, 4 and 2 · 2 being separate expressions. In addition,

trees can be treated more easily combinatorially; in a sequel paper[5], we will take

advantage of this to estimate how many elements of Ar lie below a given bound x.

So we define:

Definition 5.4.3. Given a low-defect expression E, we define a corresponding low-

defect tree T , which is a rooted tree where both edges and vertices are labeled with

positive integers. We build this tree as follows:

1. If E is a constant n, T consists of a single vertex labeled with n.

2. If E = E ′ · x + c, with T ′ the tree for E, T consists of T ′ with a new root

attached to the root of T ′. The new root is labeled with a 1, and the new edge

is labeled with c.

3. If E = E1 ·E2, with T1 and T2 the trees for E1 and E2 respectively, we construct

E by “merging” the roots of E1 and E2 – that is to say, we remove the roots of

E1 and E2 and add a new root, with edges to all the vertices adjacent to either

of the old roots; the new edge labels are equal to the old edge labels. The label

of the new root is equal to the product of the labels of the old roots.

See Figure 5.1 for an example illustrating this construction.

We can use these trees to define a notion of equivalence for expressions:

135

Definition 5.4.4. Two low-defect expressions are said to be equivalent if their cor-

responding trees are isomorphic. (Here isomorphism must preserve both the root and

all labels.)

Furthermore, every such tree occurs in this way:

Proposition 5.4.5. Every rooted tree, with vertices and edges labeled by positive

integers, occurs (up to isomorphism) as the tree for some low-defect expression.

Proof. Call the tree T . We prove this by induction on the number of vertices. If

T has only one vertex, the root, labeled n, it occurs as the tree for the low-defect

expression n. Otherwise, the tree has more than one vertex, i.e., the root has at least

one child.

If the root has only one child, let T ′ be the tree obtained by deleting the root of

T , and let E ′ be a low-defect expression that yields it. If the root is labeled n and

the unique edge off of it is labeled c, and x is a variable not appearing in E ′, then the

expression n(E ′ · x + c) is a low-defect expression that yields T . (If n = 1, we may

omit the multiplication by n.)

Finally, the root could have more than one child; call its children v1, . . . , vr, and

call its label n. Then for 1 ≤ i ≤ r, let Ti be the tree obtained by removing all

vertices except the root and the descendants of vi, and relabeling the root to have a

label of 1. Then for each i we can pick a low-defect expression Ei that yields Ti; then

the expression n · E1 · . . . · Er (with the multiplications performed in any order) is a

low-defect expression that yields T . (Again, if n = 1, we may omit the multiplication

by n.)

Because of Proposition 5.4.5, we can use the term “low-defect tree” to simply refer

to a rooted tree with vertices and edges labeled by positive integers. Also, among

the various expressions in an equivalence class (i.e., that yield the same tree), the one

constructed by Proposition 5.4.5 is one we’d like to pick out:

Definition 5.4.6. Given a low-defect tree T , a low-defect expression for it generated

by the method of Proposition 5.4.5 (with multiplications by 1 omitted) will be called

a reduced low-defect expression for T .

As mentioned above, passing from an expression E to its tree T loses a little bit

of information, but not very much. We can, in fact, completely characterize when

two expressions will yield the same tree:

136

Proposition 5.4.7. Two low-defect expressions E and E ′ are equivalent if and only

if one can get from E to the E ′ by applying the following transformations to subex-

pressions:

1. For low-defect expressions E1 and E2, one may replace E1 · E2 by E2 · E1.

2. For low-defect expressions E1, E2, and E3, one may replace (E1 · E2) · E3 by

E1 · (E2 · E3), and vice versa.

3. For integer constants n and m, one may replace n · m by the constant nm;

and for an integer constant k with k = mn, one may replace k by m · n. This

latter rule may only be applied if k does not appear as an addend in a larger

expression.

4. For a low-defect expression E1, one may replace 1 · E1 by E1, and vice versa.

5. One may rename all the variables in E, so long as distinct variables remain

distinct. (This transformation can only be applied to E as a whole, not subex-

pressions.)

Proof. It’s clear that all these moves do not change the tree. The problem is proving

that all equivalences come about this way.

Suppose T is the tree for E, T ′ is the tree for E ′, and φ : T → T ′ is an isomorphism.

We induct on the number of vertices of T , the label of the root, and the structure of

E and E ′.

First we consider the case where either E or E ′ is a product. In this case, we

decompose E and E ′ until we have written each as a product of low-defect expressions

which themselves are not products. Each of these factors can either be written as

F · x + c for some low-defect expression F , some x not appearing in F , and some

c; or as a natural number constant. Say E = E1 · . . . · Er · n1 · . . . · ns and E ′ =

E ′1 · . . . · E ′r′ · n′1 · . . . · n′s′ , where the Ei and E ′i have the former form and the ni are

constants. (Due to rules (1) and (2), we do not need to worry about parenthesization

or the order of the factors.) Note that by assumption, r + s, r′ + s′ ≥ 1, and at least

one of them is at least 2.

Let Ti denote the tree of Ei and T ′i denote the tree of E ′i. Then we can conclude

that the root of T has r children, and that Ti can be formed from T by removing, along

with all their descendants, all the children of the root except child i, and changing

the label of the root to 1. Similarly with T ′i and the r′ children of its root. Similarly,

if we let N denote the product of the ni, and N ′ the product of the n′i, we see that

137

N is the label of the root of T , and N ′ the label of the root of T ′. Since T and

T ′ are isomorphic, then, we have N = N ′, r = r′, and φ maps the children of the

root of T to the children of the root of T ′. This allows us to construct isomorphisms

φi : Ti → T ′σ(i), where σ is a fixed permutation in the group Sr. By the inductive

hypothesis, then, each Ei can be turned into E ′σ(i) by use of moves of type (1)-(5);

we can then use rules (1) and (2) to put these back in the original order. (Note that

rule (5) should be applied all at once, at the end, so as to ensure that no two distinct

variables are ever turned into the same variable.)

Meanwhile, the product n1 · . . . · ns may be turned into the product N by moves

of type (3) and (4) (type (4) is necessary if s = 0; note that in this case we cannot

have r = 0). But N = N ′, which can be turned back into the product n′1 · . . . · n′s′ by

moves of type (3) and (4) as well. This concludes the case where either E or E ′ is a

product.

In the case where neither E nor E ′ is a product, E can either be an integer

constant n, or it can be of the form F · x+ c, where F is a low-defect expression, x is

a variable not appearing in F , and c is an integer constant. In the former case, T has

no non-root vertices, so neither does T ′; since we assumed E ′ is not a product, this

means it too is an integer constant n′. However, n is the label of the unique vertex

of T , and n′ that of T ′, and since T ∼= T ′, this implies n = n′. Thus E and E ′ are

simply equal, and no moves need be applied.

Finally, we have the case where E = F · x + c as above. In this case, we must

also be able to similarly write E ′ = F ′ · x′ + c′, as if E ′ were a constant, E would

be as well by the above argument. Let U and U ′ denote the trees of F and F ′,

respectively. Then T consists of U together with a new root adjoined with a label

of 1, with the unique edge off of it labeled c; and the relation between T ′, U ′, and

c′ is the same. Then since T ∼= T ′, we conclude that c = c′ and U ∼= U ′. By the

inductive hypothesis, then, U may be transformed into U ′ by moves of type (1)-(5);

this transforms T from F · x+ c to F ′ · y + c, where y is some variable not appearing

in F ′. (Since when applying rule (5), one may have to rename x if one changes one

of the variables of F to x.) One may then apply rule (5) again to replace y by x′,

completing the transformation into E ′. This proves the proposition.

This tells us also:

Corollary 5.4.8. If E1 and E2 are equivalent low-defect expressions that both yield

the tree T , they also yield the same low-defect polynomial f , up to renaming of the

variables. That is to say, up to renaming of the variables, it is possible to determine

138

Figure 5.2: Two different trees yielding the polynomial 4x+ 2

2

2

1

1

4

2

f from T .

Proof. With the exception of renaming the variables, all of the moves allowed in

Proposition 5.4.7 consist of replacing subexpressions with other subexpressions that

evaluate to the same thing. This proves the claim.

Note that inequivalent expressions (distinct trees) can also give rise to the same

polynomial; for instance, 2(2x+1) and 4x+2 are inequivalent expressions both yield-

ing the polynomial 4x+ 2 (see Figure 5.2). However we will see in Section 5.4.2 that

from the polynomial f we can recover at least the “shape” of T , i.e., the isomorphism

class of the rooted but unlabeled tree underlying T .

Now, the non-root vertices of the tree correspond to the variables of the original

expression:

Definition 5.4.9. Let E be a low-defect expression and T the corresponding tree.

We recursively define a bijection between the variables of E and the non-root vertices

of T as follows:

1. If E is an integer constant n, then it has no variables, and T has no non-root

vertices, and the bijection is the trivial one.

2. If E = E ′ ·x+c, with T ′ the tree for E, then we use the correspondence between

variables of E ′ and the non-root vertices of T ′ to associate variables of E ′ with

vertices of T ′ ⊆ T ; and we assign the root of T ′ to correspond to the variable x.

3. If E = E1 · E2, with T1 and T2 the trees for E1 and E2 respectively, then we

use the correspondence between variables of E1 and non-root vertices of T1 to

associate variables of E1 with vertices of T1 ⊆ T ; and we do similarly with E2

and T2.

See Figure 5.3 for an illustration of this bijection.

Equivalently, each variable can be thought of as corresponding to an edge rather

than to a non-root vertex; if the variable x corresponds to the vertex v, we can

139

Figure 5.3: Low-defect tree for the expression 2((73(3x1 + 1)x2 + 6)(2x3 + 1)x4 + 1);
non-root vertices have been marked with corresponding variables in addition to their
labels.

2

1, x4

73, x2

3, x1

1

6

2, x3

1

1

instead think of it as corresponding to the edge between v and the parent of v. If

we think of variables as corresponding to vertices, however, then we can imagine the

root as corresponding to the extra variable in the augmented low-defect expression

Ê, although this analogy is not perfect.

This bijection, placing the variables of E on the tree, shows us that the variables

of a low-defect expression do not all play the same role. In Section 5.5, we will

make extensive use of the variables corresponding to leaves. See also Remark 5.4.19

regarding the variables corresponding to the children of the root. In the following

subsection, we will begin to lay out the details of how this works.

5.4.2 The nesting order, keys, and anti-keys

Given a low-defect expression, we will define a partial order, the nesting order, on its

set of variables. First, let us make the following observation:

Proposition 5.4.10. Let E be a low-defect expression. Each variable of E appears

exactly once in E, and there is a smallest low-defect subexpression of E that contains

it.

Proof. By definition, a variable of E appears in E. A variable of E cannot appear

twice in E, as no rule of constructing low-defect expressions allows this; rule (2) only

140

allows multiplying two low-defect expressions if their variables are disjoint, and rule

(3) can only introduce a new variable different from the ones already in E.

For the second part, observe that rule (3) is the only rule that introduces new

variables; so say x is some variable of E, it must have been introduced via rule (3).

This means that it occurs in a subexpression of E of the form E ′ · x + c, where E ′

is a low-defect expression and c is a positive integer constant. Since x itself is not a

low-defect expression, and neither is E ′ ·x, the next-smallest subexpression containing

x, i.e., E ′ · x+ c, is the smallest low-defect subexpression of E that contains x.

Because of this, it makes sense to define:

Definition 5.4.11. Let E be a low-defect expression. Let x and y be variables

appearing in E. We say that x � y under the nesting ordering for E if x appears in

the smallest low-defect subexpression of E that contains y.

This is, in fact, a partial order:

Proposition 5.4.12. The nesting ordering for a low-defect expression E is a partial

order.

Proof. We have x � x as x appears in any expression containing x. If x � y and

y � z, then the smallest low-defect expression containing z also contains y, and hence

contains the smallest low-defect expression containing y, and hence contains x. And if

x � y and y � x, then the smallest low-defect expression containing each is contained

in the other, i.e., the smallest low-defect expression containing x is the smallest low-

defect expression containing y. Since the former has the form E1 · x + c1, and the

latter has the form E1 · y + c2, we must have x = y.

In fact, it’s not just any partial order – it’s a partial order that we’ve already

sort of seen; it’s the partial order coming from the bijection between variables of a

low-defect expression E and non-root vertices of its tree T .

Proposition 5.4.13. Let E be a low-defect expression, and let T be the corresponding

tree. Then x � y under the nesting ordering if and only if the vertex in T correspond-

ing to x is a descendant of the vertex in T corresponding to y.

Proof. We prove this by structural induction on E. If E is an integer constant, then

there are no variables and the statement is trivial.

In the case where E = E ′ · x+ c, say T ′ is the tree corresponding to E ′. Suppose

x1 and x2 are variables of E. If x1 and x2 are both variables of E ′, then by the

141

inductive hypothesis, x1 � x2 in the nesting ordering in E ′ if and only if the vertex

corresponding to x1 in T ′ is a descendant of that corresponding to x2. However, it

is clear that x1 � x2 in the nesting ordering of E ′ if and only if x1 � x2 in the

nesting ordering of E, since the smallest low-defect subexpression of E ′ containing

x2 is necessarily also the smallest low-defect subexpression of E containing x2; and

similarly with the corresponding vertices. Hence the proposition is proved in this

case. Otherwise, we must have that one of the variables is x itself; say the variables

are x and x′. But in that case we automatically have that x′ � x, and the vertex for

x′ is a descendant of that of x.

This leaves the case where E = E1 ·E2; say T1 and T2 are the trees corresponding

to E1 and E2. If x1 and x2 are both variables of E1, then by the inductive hypothesis,

x1 � x2 in the nesting ordering in E1 if and only if the vertex corresponding to x1

in T1 is a descendant of that corresponding to x2; but as above, it does not matter if

we consider this in E1 and T1 or E and T . Similarly the statement holds if x1 and

x2 are both variables of E2. Finally, if x1 is a variable of E1 and x2 is a variable of

E2, then x1 and x2 are incomparable in the nesting ordering, as the smallest low-

defect subexpression containing x1 is contained in E1 and hence does not contain x2,

and vice versa; and, correspondingly, the corresponding vertices are incomparable in

T .

Now, we’ve already seen (Corollary 5.4.8) that it is possible to determine the low-

defect polynomial f for a low-defect expression E from its tree T . In fact, not only

is it possible to do so, but we can write down an explicit description of the terms of

f in terms of T . Specifically:

Proposition 5.4.14. Let T be a low-defect tree (say with root v0) and f the cor-

responding low-defect polynomial after assigning variables to the non-root vertices of

T ; let xv denote the variable corresponding to the vertex v. Then for a subset S of

V (T) \ {v0}, the monomial
∏

v∈S xv appears in f in and only if the subgraph induced

by S ∪ v0 is a subtree of T . Furthermore, its coefficient is given by

 ∏
v∈S∪{v0}

w(v)


 ∏

e has exactly one
vertex in S ∪ {v0}

w(e)

 .

The constant term corresponds to the subtree {v0}, and the leading term is the term

corresponding to all of T .

142

Proof. Let E be a low-defect expression giving rise to T ; we use structual induction

on E. If E is an integer constant n, then T consists of just a root labeled with

n. So the only rooted subtree of T is T itself, containing no non-root vertices; and,

correspondingly, f has a unique term, containing no variables, and with coefficient n,

which matches the formula given.

If E = E ′ · x + c, say T ′ and f ′ are the tree and the polynomial arising from E.

Let vx be the vertex of T corresponding to x, which is also the root of T ′. Then a

rooted subtree of T consists of either just v0, or v0 together with a rooted subtree

of T ′. Correspondingly, since f = xf ′ + c, a term of f is either x times a term of

f , or just c. The subtree {v0} contains no non-root vertices and so corresponds to

c; since the root is labeled with a 1 and the sole edge out of it is labeled with a c,

the formula for the coefficient is correct. Any other rooted subtree X consists of v0

together with a rooted subtree X ′ or T ′; X ′ corresponds to some term m′ of f ′. Then

we have a term xm′ in f , which corresponds to X, since the old root of T ′ is also the

vertex vx. Furthermore, the coefficient matches that given by the formula, changing

X ′ to X just means adding in the vertex v0 and the edge {v0, vx}; however, v0 has a

label of 1, not changing the product, and the label of the edge {v0, vx} is irrelevant

as both vertices are in X. (Moreover, no edges drop out of the product, as the only

new vertex is v0, and its only edge is {v0, vx}.) And since every term of f is either c

or of the form xm′ for some term m′ of f ′, every term arises in this way.

This leaves the case where E = E1 · E2; say each Ei gives rise to a trees Ti and a

polynomial fi, and let vi denote the root of Ti. Then a rooted subtree of T consists of

{v0} together with subsets X1 ⊆ T1 and X2 ⊆ T2 such Xi∪{vi} is a rooted subtree of

Ti. Correspondingly, f = f1f2, so each term of f is the product of a term of f1 and a

term of f2; since f1 and f2 have no variables in common, terms m1m2 are determined

uniquely by the pair (m1,m2), which by the inductive hypothesis are in bijection with

sets (X1, X2) as described above. It remains to check that the coefficients match. Say

X1 and X2 are subsets as described above, with each Xi corresponding to a term mi

of fi, so that the subtree X1 ∪ X2 ∪ {v0} corresponds to the term m1m2. Then the

product of the labels of vertices in X1 ∪ X2 ∪ {v0} is the product of the labels of

vertices in X1 ∪X2 times w(v0), the latter of which is equal to w(v1)w(v2), so this is

the same as the product of the labels of vertices in X1 ∪ {v1} times the product of

the labels of vertices in X2 ∪ {v2}. Meanwhile, the product over the edges is also the

product of both the previous ones, as the only edges that could change are those that

connected X1 to v1 or X2 to v2, all of which were previously not in the product due

to having both vertices in one of the Xi ∪ {vi}; but these now connect X1 and X2 to

143

v0, with both vertices in X1 ∪X2 ∪ {v0}, so they still are not in the product.

Finally, the leading term corresponds to all of T as it contains all the variables,

and the constant term corresponds to {v0} as it contains none of the variables.

This yields the following corollary, which will be useful in Section 5.5:

Corollary 5.4.15. Let E be a low-defect expression and f the corresponding low-

defect polynomial. Any term of f other than the leading term must exclude at least

one minimal variable.

Proof. Consider the low-defect tree corresponding to E. Any subtree other than the

whole tree must exclude at least one leaf, i.e., the corresponding term of f must

exclude at least one minimal variable.

It also, in particular, tells us the leading coefficient of f in terms of T , which we

will use in Section 5.4.3:

Corollary 5.4.16. Let T be a low-defect tree, and f be the corresponding low-defect

polynomial. Then the leading coefficient of f is the product of the vertex labels of T .

Proof. The leading term corresponds to the subtree consisting of all of T . This

includes all the vertices; and no edge has exactly one vertex in it, as all edges have

both vertices in it.

Now, as we’ve already noted above, we cannot go backwards from f to determine

T ; the map from trees to polynomials is not one-to-one. However, we can go part of

the way back – we can determine the “shape” of T , that is to say, the isomorphism

class of the rooted but unlabeled tree underlying T ; it is only the labels we cannot

determine with certainty.

To do this, for a low-defect polynomial f , consider the set of monomials that

appear in f , without their associated coefficients; ignoring the nesting ordering for

a moment, these monomials can be partially ordered by divisibility. But we can, in

fact, recover the nesting ordering (and thus the shape of T , without labels) from this

partial ordering. First, a definition:

Definition 5.4.17. Let E be a low-defect expression yielding a low-defect tree T and

a low-defect polynomial f ; let x be a variable in E and vx the corresponding vertex

in T . We define the key of x in E to be the term of f corresponding to the subtree

consisting of all ancestors of vx. We define the anti-key of x in E to be the term of

f corresponding to the subtree consisting of all non-descendants of vx. So the key of

144

x is the smallest term of f containing x (under divisibility ignoring coefficients), and

the anti-key of x is the largest term not containing x.

Both these operations, key and anti-key, are order-reversing:

Proposition 5.4.18. Let E be a low-defect expression, and let x and y be variables

appearing in E. Then x � y under the nesting ordering if and only if the key of y

divides the key of x (ignoring coefficients), which also occurs if and only if the anti-key

of y divides the anti-key of x.

Proof. Let T be the low-defect tree determined by E, and let vx and vy be the

vertices corresponding to x and y. By Proposition 5.4.13, x � y if and only if, vx

is a descendant of vy. But if vx is a descendant of vy, then every ancestor of vy is

an ancestor of vx, and so (ignoring coefficients), the key of y divides the key of x.

Conversely, if the key of y divides the key of x, then y divides the key of x, and so vy

is an ancestor of vx. Similarly, if vx is a descendant of vy, then every non-descendant

of vy is a non-descendant of vx, and so the anti-key of y divides the anti-key of x

(ignoring coefficients). Convesely, if the anti-key of y divides the anti-key of x, then

every non-descendant of vy is a non-descendant of vx, i.e., every descendant of vx is a

descendant of vy, i.e., vx is a descendant of vy and so x � y.

Thus, from f alone, the nesting ordering on the variables can be recovered; for as

we saw above, it is possible from f alone to determine the key and the anti-key of

some variable in f (so we can speak simply of “the key of x in f”, or “the anti-key

of x in f”). But by Proposition 5.4.18, if x and y are variables in f , and we know

their keys or anti-keys, we can determine whether or not x � y, without needing to

know the tree or expression that f came from; it does not depend on those things.

Thus it makes sense to simply talk about the nesting ordering on the variables of f .

Furthermore this means we can also recover the shape of T from f alone; the vertex

corresponding to x is a child of the vertex corresponding to y if and only if x � y and

there are no other variables inbetween, and the vertex corresponding to x is a child

of the root if and only if x is maximal in the nesting ordering.

Indeed, we can, given f , determine all trees T that yield it. By above, we know

the shape, and which variables correspond to which vertices, and Proposition 5.4.14

constrains the vertex and edge labels – indeed, it not only constrains them, it bounds

them (as every label divides at least one coefficient of f), making it possible to

determine all T that yield f (and thus to determine ‖f‖) via brute-force search.

(One can also use this procedure to determine if f is a low-defect polynomial at all,

145

if one does not already know.) But this is rather more involved than what is needed

to compute the complexity of a low-defect expression or tree!

Remark 5.4.19. It is the minimal variables of f will turn out to be quite important

in Section 5.5, but it’s worth noting that the maximal variables have a use too –

in Chapter 3, the proposition was proved (Lemma 3.4.3) that if f is a low-defect

polynomial of degree at least 1, there exists a variable x, low-defect polynomials g

and h, and a positive integer c such that f = h · (g · x+ c). With this framework – if

we allow for the use of commutativity and associativity – we can easily see that these

x are precisely the maximal variables of f .

5.4.3 A lower bound on the complexity of a low-defect poly-
nomial

In this section, we will discuss the notion of the complexity of a low-defect expression,

tree, or polynomial, and use this to prove a lower bound on the complexity of a low-

defect polynomial (Corollary 5.4.24). This lower bound is what allows us to show

that truncation will keep the degrees of our polynomials low despite our use of small

step sizes (see discussion in Section 5.2.3).

A low-defect expression has an associated base complexity:

Definition 5.4.20. We define the complexity of a low-defect expression E, denoted

‖E‖, as follows:

1. If E is a positive integer constant n, we define ‖E‖ = ‖n‖.

2. If E is of the form E1 · E2, where E1 and E2 are low-defect expressions, we

define ‖E‖ = ‖E1‖+ ‖E2‖.

3. If E is of the form E ′ ·x+ c, where E ′ is a low-defect expression, x is a variable,

and c is a positive integer constant, we define ‖E‖ = ‖E ′‖+ ‖c‖.

In Section 5.2 we defined ‖f‖, for a low-defect polynomial f , to be the smallest

C such that (f, C) is a low-defect pair. Above, we also defined the notion of ‖E‖ for

E a low-defect expression. These are compatible as follows:

Proposition 5.4.21. Let f be a low-defect polynomial. Then ‖f‖ is the smallest

value of ‖E‖ among low-defect expressions E that evaluate to f .

Proof. The rules for building up a low-defect pair (f, C) are exactly the same as

the rules for building a low-defect expression E, and what these rules do to the base

146

complexity C is exactly the same as what they do to the complexity ‖E‖ (except that

they allow for increasing C further). So each low-defect pair (f, C) comes from some

low-defect expression E yielding f with ‖E‖ ≤ C, and any low-defect expression E

yielding f yields a low-defect pair (f, ‖E‖). So the lowest possible value of C and of

‖E‖ are the same.

Indeed, though we will not use this formalism here, it may make sense to consider

“low-defect expression pairs”, pairs (E,C) where E is a low-defect expression and

C ≥ ‖E‖. After all, the definition of ‖E‖ assumes one knows the complexities of the

integer constants appearing in ‖E‖, but one may not know these exactly, but only have

an upper bound on them. For instance, one might not be using low-defect expressions

as we defined them here, but rather ones where, instead of integer constants, one has

representations of integers in terms of 1, +, and ·. That is to say, perhaps one is not

using expressions such as 2(2x+ 1), but rather such as (1 + 1)((1 + 1)x+ 1). In this

example, the expressions used for the integer constants were most-efficient, but this

may not be the case in general. In this case, it would make sense to consider the

complexity of the expression to be simply the number of 1’s used, which would be an

upper bound on the complexity of the low-defect expression it yields. This sort of only

having an upper bound is, after all, the reason we consider pairs (f, C), and it may

make sense in other contexts to do with expressions as we do here with polynomials.

(Indeed, the author’s implementation of the algorithms here does something like this;

see Appendix C.)

Since we like to encode low-defect expressions as trees, it makes sense to define

the complexity of these:

Definition 5.4.22. The complexity of a low-defect tree, ‖T‖, is defined to be the

smallest ‖E‖ among all low-defect expressions yielding T .

Note that it follows from this definition that for a low-defect polynomial f , ‖f‖
can be equivalently characterized as the smallest ‖T‖ among all trees T yielding f .

Again, it may make sense in other contexts to consider pairs (T,C) with C ≥ ‖T‖,
for the same reasons discussed above. If, however, we do know the complexity of

arbitrary natural numbers, then the complexities of expressions and of trees can be

computed as follows:

Proposition 5.4.23. We have:

1. Let E be a low-defect expression. Then ‖E‖ is equal to the sum of the complex-

ities of all the integer constants occurring in E.

147

2. Let T be a low-defect tree. Then

‖T‖ =
∑

e an edge

‖w(e)‖+
∑

v a leaf

‖w(v)‖+
∑

v a non-leaf vertex
w(v)>1

‖w(v)‖,

where w denotes the label of the given vertex or edge.

Proof. The first statement is a straightforward structural induction. If E is a con-

stant, its complexity is the complexity of that constant. If E = E1 ·E2, its complexity

is ‖E1‖ + ‖E2‖, which by the inductive hypothesis is the sum of the complexities of

all the constants used in either. And if E = E ′ · x + c, its complexity is ‖E ′‖ + ‖c‖,
which by the inductive hypothesis is the sum of the complexities of the constants

used in E ′ plus that of the new constant introduced.

For the second statement, consider a reduced low-defect expression E giving rise

to T . Then the edge and vertex labels correspond exactly to the constants used in

E, with the exception of labels of 1 on non-leaf vertices. As ‖T‖ ≤ ‖E‖, this shows

that the formula above is an upper bound on ‖T‖. For the lower bound, note that

by Proposition 5.4.7, any other low-defect expression for T can be obtained by E by

the listed moves. Moves of the form (1), (2), and (5) do not alter the complexity of

an expression at all.

This leaves moves of type (3) and (4). Suppose (3) or (4) is going to be applied

to a subexpression E ′; consider E ′ as a product (possibly of one thing) and consider

the largest product P containing the factors of E ′ as factors. That is to say, let P be

the largest subexpression of the form E1 · . . . · Ek (where due to (1) and (2), we do

not need to worry about parenthesization or order) where the Ei cannot be written

as products, and the factors of E ′ are among the Ei. Since (3) and (4), applied to

factors of P , only alter things within P , and do not alter the internals of any Ei which

can be written as a sum, we see that the least complexity is obtained by minimizing

the complexity of each individual product P . But this is clearly done by multiplying

together all constants and eliminating 1’s where possible. This leaves us with an

expression which is the same as E up to moves of the form (1), (2), and (5). Hence

E has the lowest complexity among expressions for T , and so ‖T‖ = ‖E‖, which as

noted, is given by the formula.

With this, we now obtain our lower bound:

148

Proposition 5.4.24. Let (f, C) be a low-defect pair of degree k, and suppose that a

is the leading coefficient of f . Then C ≥ ‖a‖ + k. Equivalently, if f is a low-defect

polynomial of degree k with leading coefficient a, then ‖f‖ ≥ ‖a‖+ k.

Proof. Let T be a low-defect tree giving rise to f with C ≥ ‖T‖. Then

‖T‖ ≥
∑

e an edge

‖w(e)‖+
∑

v a vertex
w(v)>1

‖w(v)‖

≥

(∑
e an edge

1

)
+

∥∥∥∥∥∥∥
∏

v a vertex
w(v)>1

w(v)

∥∥∥∥∥∥∥ .
That is, by Corollary 5.4.16, it is at least the number of edges plus ‖a‖. Since the

number of edges is one less than the number of vertices, the number of edges is k. So

C ≥ ‖a‖+ k.

The second statement then follows as ‖f‖ is by definition the smallest C among

low-defect pairs (f, C).

In particular, the degree of a polynomial is bounded by its defect:

Corollary 5.4.25. Let (f, C) be a low-defect pair of degree k, and suppose that a

is the leading coefficient of f . Then δ(f, C) ≥ δ(a) + k ≥ k. Equivalently, δ(f) ≥
δ(a) + k ≥ k.

Proof. By definition, δ(f, C) = C − 3 log3 a. So

δ(f, C) = C − 3 log3 a ≥ ‖a‖+ k − 3 log3 a = δ(a) + k,

and δ(a)+k ≥ k. The second statement then follows as δ(f) is just the smallest value

of δ(f, C) among low-defect pairs (f, C).

5.5 The truncation operation

Now, finally, we can describe the operation of truncating a low-defect polynomial

(or expression, or tree) to a given defect – the “filtering-down” half of our method.

The results here will be phrased in terms of low-defect pairs, but the analogues for

low-defect expressions are clear.

149

5.5.1 Truncations and their properties

First we just describe truncating a low-defect polynomial in general:

Proposition 5.5.1. Let (f, C) be a low-defect pair, say of degree r, and suppose xi

is a variable of f which is minimal with respect to the nesting ordering. Let k ≥ 0 be

an integer, and define

g(x1, . . . , xi−1, xi+1, . . . , xr) := f(x1, . . . , xi−1, 3
k, xi+1, . . . , xr).

Then:

1. The polynomial g is a low-defect polynomial, and (g, C + 3k) is a low-defect

pair.

2. If a is the leading coefficient of f , then the leading coefficient of g is strictly

greater than a3k, and so δ(g, C + 3k) < δ(f, C).

3. The nesting order on the variables of g is the restriction of the nesting order on

the variables of f to {x1, . . . , xi−1, xi+1, . . . , xr}.

4. For any k1, . . . , ki−1, ki+1, . . . , kr, we have

δg,C+3k(k1, . . . , ki−1, ki+1, . . . , kr) = δf,C(k1, . . . , ki−1, k, ki+1, . . . , kr).

Proof. Let E be a low-defect expression of complexity at most C giving rise to f ; we

apply structural induction to prove parts (1), (2), and (3). Note that E cannot be

an integer constant as then it would have no variables.

If E = E ′·x+c, there are two cases; either E ′ has degree 0, or it has positive degree.

In the former case, x is the unique minimal variable, so xi = x; say E ′ evaluates to the

constant n and has complexity at most C ′ = C−‖c‖. Then g is equal to the constant

n3k + c, which can be given by a low-defect expression. Furthermore, the complexity

of this low-defect expression is at most C ′ + 3k + ‖c‖ = C + 3k, so (g, C + 3k) is a

low-defect pair. And whereas the leading coefficient of f was n, the leading coefficient

of g is n3k + c > n3k. Finally, g has no variables, so part (3) is trivially true.

Otherwise, if E ′ has positive degree, then x is not minimal, and the minimal

variables in E are precisely the minimal variables in E ′. Assume without loss of

generality that x = xr. Say E ′ has complexity at most C ′ = C − ‖c‖. Let f ′ be the

polynomial coming from E ′, and

g′(x1, . . . , xi−1, xi+1, . . . , xr−1) := f ′(x1, . . . , xi−1, 3
k, xi+1, . . . , xr−1).

150

Then by the inductive hypothesis, g′ is a low-defect polynomial, coming from some

low-defect expression E ′′ with complexity at most C ′ + 3k. So g is a low-defect

polynomial as it comes from the low-defect expression E ′′ ·x+c, which has complexity

at most

C ′ + 3k + ‖c‖ = C + 3k.

And if a is the leading coefficient of f , then it is also the leading coefficient of f ′,

and so by the inductive hypothesis the leading coefficient of g′ is greater than a3k,

but the leading coefficient of g is the same as that of g′. Finally, by the inductive

hypothesis, the nesting order on the variables of g′ is the restriction of the nesting

order of the variables of f ′, and the nesting order on the variables of g is the same

as that on the variables of g′, but with xr added as a new maximum element; since

the same relation holds between the nesting order for f and the nesting order for f ′,

part (3) is true in this case.

This leaves the case where E = E1 · E2. In this case, a minimal variable of E is

either a minimal variable of E1 or a minimal variable of E2. Suppose without loss of

generality that

E(x1, . . . , xr) = E1(x1, . . . , xs)E2(xs+1, . . . , xr)

and i ≤ s. Say E1 and E2 give rise to polynomials f ′ and h, and E1 has complexity

at most C ′ = C − ‖E2‖. Then if we define

g′(x1, . . . , xi−1, xi+1, . . . , xs) := f ′(x1, . . . , xi−1, 3
k, xi+1, . . . , xs),

by the inductive hypothesis, g′ is a low-defect polynomial, coming from some low-

defect expression E ′ with complexity at most C ′+3k. So g is a low-defect polynomial

as it comes from the low-defect expression E ′ · E2, which has complexity at most

C ′ + 3k + ‖E2‖ = C + 3k. And if a1 is the leading coefficient of f ′ and a2 is the

leading coefficient of h, then the leading coefficient of f = f ′ · h is a1a2, while by

the inductive hypothesis, the leading coefficient of g is strictly greater than 3ka1, and

so the leading coefficient of g = g′ · h is strictly greater than 3ka1a2. Finally, the

nesting order on the variables of g is just the disjoint union of the nesting order on

the variables of g′ and the nesting order on the variables of h, and the same relation

holds between the nesting order for f and the nesting order for f ′. By the inductive

hypothesis, the nesting order for g′ is just the restriction of that for f ′, so the same

relation holds between g and f .

151

To prove the second statement in part (2), we note that if a is the leading coefficient

of f and b is the leading coefficient of g, since b > a3k,

δ(g, C + 3k) = C + 3k − 3 log3(b) = C − 3 log3(b3
−k) < C − 3 log3(a) = δ(f, C).

Finally, part (4) follows as

δg,C+3k(k1, . . . , ki−1, ki+1, . . . , kr) =

C + 3k + 3(k1 + . . .+ ki−1 + ki+1 + . . .+ kr)− 3 log3 g(3k1 , . . . , 3ki−1 , 3ki+1 , . . . , 3kr) =

C + 3(k1 + . . .+ ki−1 + k+ ki+1 + . . .+ kr)− 3 log3 f(3k1 , . . . , 3ki−1 , 3k, 3ki+1 , . . . , 3kr) =

δf,C(k1, . . . , ki−1, k, ki+1, . . . , kr).

Definition 5.5.2. Let (f, C) be a low-defect pair, and let (g,D) be obtained from

it as in Proposition 5.5.1; we will call (g,D) a direct truncation of (f, C), and g an

direct truncation of f .

Furthermore, we will define (g,D) to be a truncation of (f, C) if there are low-

defect pairs (f, C) = (f0, C0), (f1, C1), . . . , (fk, Ck) = (g,D) with (fi+1, Ci+1) a direct

truncation of (fi, Ci). Similarly in this case we say g is a truncation of f .

Immediately we get:

Proposition 5.5.3. Say (f, C) is a low-defect pair and (g,D) is a truncation of it.

Then:

1. δ(g,D) < δ(f, C).

2. The nesting order on the variables of g is the restriction of the nesting order on

the variables of f .

Proof. This follows immediately from iterating parts (2) and (3) of Proposition 5.5.1.

So, when we truncate f , we are substituting powers of 3 into some of the variables,

and leaving the other variables free. Say f has degree r, and consider the function

(k1, . . . , kr) 7→ f(3k1 , . . . , 3kr)

152

from Zr≥0 to N; when we truncate f , we are fixing the values of some of the ki. In a

sense, we are restricting f to a subset of Zr≥0 fo the form S1× . . .×Sr, where each Si

is either a single point or all of Z≥0.
As such we will want a way of talking about such sets; we will represent them by

elements of (Z≥0 ∪ {∗})r, where here ∗ is just an abstract symbol which is distinct

from any whole number; it represents “this position can be any number”, or the set

Z≥0, where putting in an actual number n would represent “this position must be n”,

or the set {n}. Let us formally define our way of getting a set from such an object,

how we can substitute these objects into low-defect polynomials:

Definitions 5.5.4. Given (k1, . . . , kr) ∈ (Z≥0 ∪ {∗})r, we define S(k1, . . . , kr) to be

the set

{(`1, . . . , `r) ∈ Zr≥0 : `i = ki for ki 6= ∗}.

Furthermore, given f ∈ Z[x1, . . . , xr], we define the 3-substitution of (k1, . . . , kr)

into f to be the polynomial obtained by substituting 3ki for xi whenever ki 6= ∗. If

(f, C) is a low-defect pair, we define the 3-substitution of (k1, . . . , kr) to be (g,D)

where g is the 3-substitution of (k1, . . . , kr) into f , and D = C + 3
∑

ki 6=∗ ki.

Be warned that in general, 3-substituting into a low-defect pair may not yield a

low-defect pair, if one substitutes into the wrong variables. For instance, if (f, C) =

((3x1 + 1)x2 + 1, 5), then 3-substituting in (∗, 1) yields (9x + 4, 8), which is not a

low-defect pair. And if (f, C) = ((3x1 + 1)(3x2 + 1)x3 + 1, 9), and one 3-substitutes

in (∗, ∗, 0), then one obtains (9x1x2 + 3x1 + 3x2 + 2, 9), the first element of which is

not a low-defect polynomial at all.

However, in what follows, we will only be using this notion in cases where it does,

in fact, turn out to be a low-defect pair – specifically, in the following cases:

Proposition 5.5.5. Let (f, C) be a low-defect pair, and let (k1, . . . , kr) ∈ (Z≥0∪{∗})r

be such that the set of i for which ki 6= ∗ corresponds to a downward-closed subset

of the variables of f . Let (g,D) denote the 3-substitution of (k1, . . . , kr) into (f, C).

Then:

1. The pair (g,D) is a truncation of (f, C) (and hence a low-defect pair).

2. Let t be the number of i such that ki = ∗, and let ι be the map from Zt≥0 to Zr≥0
given by inserting the arguments (`1, . . . , `t) into the coordinates of (k1, . . . , kr)

where ki = ∗. Then δg,D = δf,C ◦ ι.

Furthermore, all truncations of (f, C) arise in this way.

153

Proof. We first prove part (1). Let i1, . . . , is be the indices for which ki 6= ∗, enu-

merated in an order such that if xij � xij′ then ij ≤ ij′ . Let (f0, C0) = (f, C).

Now, for 1 ≤ j ≤ s, given (fj−1, Cj−1), we will take (fj, Cj) to be the direct trun-

cation of (fj−1, Cj−1) where 3kij is substituted into xij . Of course, in order for this

to be a direct truncation, xij must be minimal in fj−1. But this follows due to

the order we have enumerated the elements; by assumption, each xij is minimal in

{xij , . . . , xis}, and since {xi1 , . . . , xis} is downwardly closed in {x1, . . . , xr}, we have

that {xij , . . . , xis} is downwardly closed in {x1, . . . , xr} \ {xi1 , . . . , xij−1
}, and so xij

is minimal in {x1, . . . , xr} \ {xi1 , . . . , xij−1
}. And by Proposition 5.5.3, this last set is

precisely the set of variables of fj, with the same nesting order. Thus this is indeed

a truncation.

Part (2) follows by simply iterating part (4) of Proposition 5.5.1 in the above.

Finally, we can see that every truncation arises in this way by inducting on the number

of steps in the truncation. If there are no steps, then this is true with (k1, . . . , kr) =

(∗, . . . , ∗). Otherwise, say that (fs, Cs) is an s-step truncation of (f, C) and that

(fs+1, Cs+1) is a direct truncation of it; we assume by induction that (fs, Cs) is the

3-substitution into (f, C) of some tuple (k1, . . . , kr) ∈ (Z≥0∪{∗})r. Then (fs+1, Cs+1)

is the 3-substitution into (fs, Cs) of some tuple (∗, . . . , ∗, `j, ∗, . . . , ∗) ∈ (Z≥0∪{∗})r−s

(here `j 6= ∗). This makes it the 3-substitution into (f, C) of some tuple (k′1, . . . , k
′
r),

where k′i = ki when ki 6= ∗, and ki = `j for one particular i with ki = ∗.

So, in fact, we’ll only be using the notion of 3-substitution in cases where it

yields a truncation; or, really, we’ll just be using it as another way of thinking about

truncation.

5.5.2 Truncating a polynomial to a given defect

Having discussed truncation in general, we can now discuss how to truncate a low-

defect polynomial to a given defect. Earlier, in Proposition 5.2.14, we showed that

for a low-defect pair (f, C), the number δ(f, C) is the least upper bound of the values

of δf,C . Now we show that something stronger is true:

Proposition 5.5.6. Let (f, C) be a low-defect pair of degree r. Say xij , for 1 ≤ j ≤ s,

are the minimal variables of f . Then

lim
ki1 ,...,kis→∞

δf,C(k1, . . . , kr) = δ(f, C)

(where the other ki remain fixed).

154

Proof. Consider once again g, the reverse polynomial of f :

g(x1, . . . , xr) = x1 . . . xrf(x−11 , . . . , x−1r).

So g is a multilinear polynomial in x1, . . . , xr, with the coefficient of
∏

i∈S xi in g

being the coefficient of
∏

i/∈S xi in f . Let a denote the leading coefficient of f , which

is also the constant term of g.

By Corollary 5.4.15, every non-leading term of f excludes some minimal variable.

Hence every non-constant term of g includes some minimal variable. So if we once

again write

δf,C(k1, . . . , kr) = C − 3 log3 g(3−k1 , . . . , 3−kr),

we see that as the minimal variables approach infinity, then each non-constant term of

g(3−k1 , . . . , 3−kr) approaches 0, and so g(3−k1 , . . . , 3−kr) approaches a. So once again

we have

lim
ki1 ,...,kis→∞

δf,C(k1, . . . , kr) = C − 3 log3 a = δ(f, C).

One can obtain numerical versions of this proposition, but we do not bother to

state them here. One can still write the algorithms this chapter describes without

needing to make this numerical, and, as discussed in Appendix C, in the author’s

implementation that is exactly what we have done.

We can restate this proposition as follows:

Corollary 5.5.7. Let (f, C) be a low-defect pair, say of degree r > 0, let 0 ≤
s < δ(f, C) be a real number. Then there exists a number K such that, whenever

δf,C(k1, . . . , kr) < s, then ki ≤ K for some i such that xi is minimal in the nesting

ordering for f .

Proof. By Proposition 5.5.6, since s < δ(f, C), we can choose some K such that

δf,C(k1, . . . , kr) ≥ s, where ki = K + 1 if xi is minimal in the nesting ordering and

ki = 0 otherwise. Then if for some `1, . . . , `r we have δf,C(`1, . . . , `r) < s, then since

δf,C is increasing in all variables, there is some i such that `i ≤ K.

With this, we can now finally describe truncating a low-defect pair to a specified

defect:

155

Theorem 5.5.8. Let (f, C) be a low-defect pair, say of degree r, let s ≥ 0 be a real

number, and let S = {(k1, . . . , kr) : δf,C(k1, . . . , kr) < s}. Then there exists a finite

set T ⊆ (Z≥0 ∪ {∗})r such that:

1. We have S =
⋃
p∈T S(p).

2. For each p in T , the set of i for which ki 6= ∗ corresponds to a subset of the

variables of f which is downward closed (under the nesting ordering); hence if

(g,D) denotes the 3-substitution of p into (f, C), then (g,D) is a truncation of

(f, C). Furthermore, we have δ(g,D) ≤ s, and hence deg g ≤ bsc; and if g has

degree 0, the former inequality is strict.

Proof. We prove the statement by induction on r.

Suppose r = 0, that is to say, f is a constant n. If s > δ(f, C), then we may take

T = {()}, where here () indicates the unique element of (Z≥0∪{∗})0. For S() = {()},
and S = {()} as well, for δf,C() = C − 3 log3 n = δ(f, C) < s. So the first condition is

satisfied. For the second condition, the set of indices used is the empty set, we have

(g,D) = (f, C) (hence (g,D) is trivially a truncation), and so δ(g,D) = δ(f, C) < s.

Otherwise, if s ≤ δ(f, C), we take T = ∅, so
⋃
p∈T S(p) = ∅. Since, as was noted

above, δf,C() = δ(f, C), we have δf,C() ≥ s, and hence S = ∅; thus the first condition

is satisfied. The second condition is satisfied trivially.

Now suppose that r > 0. Once again, we have two cases. If s ≥ δ(f, C), then

we may take T = {(∗, . . . , ∗)}. By Proposition 5.2.13, for any (k1, . . . , kr) ∈ Zr≥0,
we have δf,C(k1, . . . , kr) < δ(f, C) ≤ s, i.e. S = Zr≥0 = S(∗, . . . , ∗), satisfying the

first condition. For the second condition, we once again have that the set of indices

used is the null set, so (g,D) = (f, C), and so is trivially a truncation, and δ(g,D) =

δ(f, C) ≤ s.

This leaves the case where r > 0 and s < δ(f, C). In this case, we may apply

Corollary 5.5.7, and choose a K such that whenever δf,C(k1, . . . , kr) < s, then ki ≤ K

for some i which is minimal in the nesting ordering. That is to say, if we define

T0 := {(∗, . . . , ∗, ki, ∗, . . . , ∗) : xi minimal in nesting ordering, ki ≤ K},

then S ⊆
⋃
p∈T0 S(p), and for each p ∈ T , the 3-substitution of p into (f, C) is a direct

truncation of (f, C). However, we still do not necessarily have that δ(g,D) ≤ s, nor

do we necessarily have equality in the first condition. This is where we apply the

inductive hypothesis.

156

For each p ∈ T0, let (gp, Dp) be the 3-substitution of p into (f, C); this is a di-

rect truncation of (f, C). Apply the inductive hypothesis to each (gp, Dp) to ob-

tain Tp ⊆ (Z≥0 ∪ {∗})r−1. We can then pull this back to T ′p ⊆ (Z≥0 ∪ {∗})r;
since p = (∗, . . . , ∗, ki, ∗, . . .) for some position i and some number ki, we can pull

back q = (`1, . . . , `i−1, `i+1, . . . , `r) ∈ Tp (where here we may have `j = ∗) to q′ :=

(`1, . . . , `i−1, ki, `i+1, . . . , `r). Finally we can take T =
⋃
p∈T0 T

′
p.

It remains to show that T has the desired properties. Say we have an element of

T ; it is an element of some T ′p, i.e., with the notation above, it has the form q′ for

some q ∈ Tp. Say p = (∗, . . . , ∗, ki, ∗, . . .). The indices used in q correspond to some

downward closed subset of the variables of (gp, Dp), i.e. to a downward closed subset

of {x1, . . . , xi−1, xi+1, . . . , xr}. Since xi is minimal in {x1, . . . , xr}, adding it in again

results in a downward closed set.

Now we check that S ⊆
⋃
p∈T S(p). Say δf,C(k1, . . . , kr) < s; then there is some i

with xi minimal and ki ≤ K. Let p be the corresponding element of T0 and (gp, Dp) as

above. Then by Proposition 5.5.1, δgp,Dp(k1, . . . , ki−1, ki+1, . . . , kr) = δf,C(k1, . . . , kr),

and so (k1, . . . , ki−1, ki+1, . . . , kr) ∈ Tp, and so (k1, . . . , kr) ∈ T ′p ⊆ T , as needed.

Suppose now that we take an element of T ; write it as q′ ∈ T ′p for some p and

some q ∈ Tp, using the notation above. Then (gq′ , Dq′) can also be obtained by 3-

susbtituting q into (gp, Dp); hence by the inductive hypothesis, δ(gq′ , Dq′) ≤ s, and

this is strict if deg gq′ = 0. This then proves as well that S ⊇
⋃
p∈T S(p); say q′ ∈ T ,

write q′ = (k1, . . . , kr), and let i1, . . . , is be the indices for which ki = ∗. Then for

(`1, . . . , `r) ∈ S(q′), we may write δf,C(`1, . . . , `r) = δgq′ ,Dq′ (`i1 , . . . , `is), and this latter

is less than s, since it is at most δ(gq′ , Dq′), and strictly less than it if deg gq′ > 0.

This proves the theorem.

And if we can truncate one low-defect polynomial to a given defect, we can

truncate many low-defect polynomials to that same defect. Here then, at last, is

what results from taking the “building-up” Theorem 5.2.21, and applying our new

“filtering-down” step:

Theorem 5.5.9. For any real s ≥ 0, there exists a finite set Ss of low-defect pairs

satisfying the following conditions:

1. For any n ∈ Bs, there is some low-defect pair in Ss that efficiently 3-represents

n.

2. Each pair (f, C) ∈ Ss satisfies δ(f, C) ≤ s, and hence deg f ≤ bsc; and if f has

degree 0, the former inequality is strict.

157

Proof. By Theorem 5.2.22, there exists a finite set Ts of low-defect pairs such that

for any n ∈ Bs, there is some low-defect pair in Ts that efficiently 3-represents s.

(Indeed, by Theorem 5.2.22, we may even choose Ts to only consist of polynomials of

degree at most bsc, but this is not needed.)

Now for each (f, C) ∈ Ts, take Tf,C as provided by Theorem 5.5.8; define Tf,C to

be the set

{(g,D) : (g,D) is a 3-substitution of p into (f, C), p ∈ Tf,C};

this is a set of low-defect pairs by condition (2) of Theorem 5.5.8. We can then define

Ss to be the union of the Tf,C . We see immediately that S satisfies condition (2) of

the theorem, as this follows from condition (2) of Theorem 5.5.8.

To verify condition (1), say n ∈ Bs. Then there is some (f, C) ∈ Ts that ef-

ficiently 3-represents n; say n = f(3`1 , . . . , 3`r) with ‖n‖ = C + 3(`1 + . . . + `r),

so δf,C(`1, . . . , `r) = δ(n) < s. Then (`1, . . . , `r) ∈ S(p) for some p ∈ Tf,C . Say

p = (k1, . . . , kr), and let i1, . . . , is be the indices for which ki = ∗. Then if we let (g,D)

be the 3-substitution of p into (f, C), then n = f(3`1 , . . . , 3`r) = g(3`i1 , . . . , 3`is), and

‖n‖ = C + 3(`1 + . . .+ `r) = D+ 3(`i1 + . . .+ `is), so n is efficiently 3-represented by

(g,D) ∈ Tf,C ⊆ Ss.

The output of this proof is a useful enough concept that we will give it a name:

Definition 5.5.10. For r ≥ 0, a finite set S of low-defect pairs will be called a good

covering for Br if every n ∈ Br can be efficiently 3-represented by some pair in S (and

hence every n ∈ Ar can be efficiently represented by some (f̂ , C) with (f, C) ∈ S);

for every (f, C) ∈ S, δ(f, C) ≤ r, with this being strict if deg f = 0.

Note that although a good covering of Br cannot produce extraneous numbers

in the sense of 3-representing numbers whose defects are too high, it can still 3-

represent numbers that are not leaders. For example, if we use Algorithm 6 from the

next section with step size α = δ(2) to produce a good covering of B12δ(2), we will

find that it includes the low-defect pair (4x + 2, 5), which 3-represents the number

6, which is not a leader. Still, this is a minor deficiency; and so long as one cares

primarily about Ar and not Br, it is hardly a deficiency at all.

5.6 Algorithms: Computing good coverings

In this section we now turn the abstract results of the above sections into algorithms.

However, the results of the above sections deal with real numbers, but real numbers

158

cannot be represented exactly in a computer. Hence, we will for the rest of this

section fix a subset R of the real numbers on which we can do exact computation.

For concreteness, we will define

Definition 5.6.1. The set R is the set of all real numbers of the form q + r log3 n,

where q and r are rational and n is a natural number.

This will suffice for our purposes; however it is worth noting that all these al-

gorithms will work just as well with a larger set of allowed numbers, so long as it

supports all the required operations.

In this section we will present several algorithms for computing numbers of small

defect and extracting information from them. Since these algorithms in some cases

simply use the methods described in the proofs in this chapter, we will, in these cases,

not give detailed proofs of correctness; we will simply direct the reader to the proof

of the corresponding theorem. We will include proofs of correctness only where we

are not directly following the proof of an earlier theorem.

5.6.1 Algorithm 1: Computing Bα, 0 < α < 1.

We begin with the algorithms for computing a good covering of a given Br. First, we

have Algorithm 1, found on page 160, for the base case, that of determining Bα, for

0 < α < 1.

Proof of correctness for Algorithm 1. The correctness of this algorithm is immediate

from Theorem 5.2.18.

5.6.2 Algorithm 2: Computing B(k+1)α.

Now we record Algorithm 2, found on page 161, for computing a covering set for

B(k+1)α if we have ones already for Bα, . . . , Bkα. It is mostly just the same as Theo-

rem 5.2.21, but we make a slight modification to avoid redundancy.

Proof of correctness for Algorithm 2. Algorithm 2 is, for the most part, exactly The-

orem 5.2.21. The only difference is the removal of the pairs (3, 3) and (1, 1) from

the possibilities of things to multiply by; this step needs additional justification. For

(1, 1), this is because no number n can be most-efficiently represented as 1 ·n; if (f, C)

is a low-defect pair, then the low-defect pair (f, C + 1) cannot efficiently 3-represent

anything, as anything it 3-represents is also 3-represented by the pair (f, C). For

(3, 3), there are two possibilities. If 3n is a number which is 3-represented by by

159

Algorithm 1 Determine the set Bα

Ensure: α ∈ (0, 1) ∩R
Require: T = {(n, k) : n ∈ Bα, k = ‖n‖}
T ← {(3, 3)}
Determine largest integer k such that kδ(2) < α and k ≤ 9 {k may be 0, in which
case the following loop never executes}
for i = 1 to k do
T ← T ∪ {(2i, 2i)}

end for
Determine largest integer k such that δ(5) + kδ(2) < α and k ≤ 3 {k may be
negative, in which case the following loop never executes}
for i = 0 to k do
T ← T ∪ {(5 · 2i, 5 + 2i)}

end for
Determine largest integer k such that δ(7) + kδ(2) < α and k ≤ 2 {k may be
negative, in which case the following loop never executes}
for i = 0 to k do
T ← T ∪ {(7 · 2i, 6 + 2i)}

end for
if α > δ(19) then
T ← T ∪ {(19, 9)}

end if
if α > δ(13) then
T ← T ∪ {(13, 8)}

end if
Determine largest integer k for which 1−3 log3(1+3−k) < α {k may be 0, in which
case the following loop never executes}
for i = 1 to k do
T ← T ∪ {(3i + 1, 1 + 3i)}

end for
return T

160

Algorithm 2 Compute a covering set Sk+1 for B(k+1)α from covering sets S1, . . . ,Sk
for Bα, . . . , Bkα

Require: k ∈ N, α ∈ (0, 1) ∩R, Si a covering set for Biα for 1 ≤ i ≤ k
Ensure: Sk+1 a covering set for B(k+1)α

for all i = 1 to k do
S ′i ← Si \ {(1, 1), (3, 3)}

end for
Sk+1 ← ∅
Compute the set Tα, and the complexities of its elements; let U be the set {(n, ‖n‖) :
n ∈ Tα} {One may use instead a superset of Tα if determining Tα exactly takes too
long}
Compute the set Vk,α = {n : ‖n‖ < (k + 1)α + 3 log3 2} {Again, one may use a
superset}
if k = 1 then
Sk+1 ← Sk+1 ∪ {(f1 ⊗ f2 ⊗ f3, C1 + C2 + C3) : (f`, C`) ∈ S ′1}
Sk+1 ← Sk+1 ∪ {(f1 ⊗ f2, C1 + C2) : (f`, C`) ∈ S ′1}

else
Sk+1 ← Sk+1 ∪ {(f ⊗ g, C +D) : (f, C) ∈ S ′i, (g,D) ∈ S ′j, i+ j = k + 2}

end if
Sk+1 ← Sk+1 ∪ {(f ⊗ x+ b, C + ‖b‖) : (f, C) ∈ Skα, b ∈ Vk,α}
Sk+1 ← Sk+1∪{(g⊗ (f ⊗x+ b), C +D+ ‖b‖) : (f, C) ∈ Skα, b ∈ Vk,α, (g,D) ∈ S ′1}
Sk+1 ← Sk+1 ∪ U
Sk+1 ← Sk+1 ∪ {(f ⊗ g, C ⊗D) : f ∈ U, g ∈ S ′1}
return Sk+1

161

(3f, C + 3), then either the representation as 3 · n is most-efficient or it is not. If

it is, then 3n is not a leader, and so not in any Biα, and thus we do not need it to

be 3-represented. If it is not, then it is not efficiently 3-represented by (3f, C + 3).

So these particular pairs do not need to be multiplied by, and the algorithm still

works.

5.6.3 Algorithm 3: Computing a covering set for Br.

We can now put the two of these together to form Algorithm 3, found on page 162,

for computing a covering set for Br. If we look ahead to Algorithm 5, we can turn it

into a good covering.

Algorithm 3 Compute a covering set for Br

Require: r ∈ R, r ≥ 0
Ensure: S is a covering set for Br

Choose a step size α ∈ (0, 1) ∩R
Let T1 be the output of Algorithm 1 for α {This is a good covering of Bα}
for k = 1 to d r

α
e − 1 do

Use Algorithm 2 to compute a covering set Tk+1 for B(k+1)α from our covering
sets Ti for Biα

Optional step: Do other things to Tk+1 that continue to keep it a covering set
for B(k+1)α while making it more practical to work with. For instance, one may
use Algorithm 5 to turn it into a good covering of B(k+1)α, or one may remove
elements of Tk+1 that are redundant (i.e., if one has (f, C) and (g,D) in Tk+1

such that any n which is efficiently 3-represented by (f, C) is also efficiently
represented by (g,D), one may remove (f, C))

end for
S ← Tk+1

return S

Proof of correctness for Algorithm 3. Assuming the correctness of Algorithm 1 and

Algorithm 2, the correctness of Algorithm 3 follows immediately. Again, this is

just making use of Theorem 5.2.21, following the proof of Theorem 5.2.22 (Theo-

rem 3.4.10).

5.6.4 Algorithm 4: Truncating a polynomial to a given defect.

That completes the “building-up” half of the method. For the “filtering-down” half,

we start with Algorithm 4, found on page 163, for truncating a given polynomial to

a given defect:

162

Algorithm 4 Truncate the low-defect pair (f, C) to the defect s

Require: (f, C) is a low-defect pair, s ∈ R
Ensure: T is a set of low-defect pairs, obtained by 3-substituting into (f, C) all the

elements of a set S satisfying the conclusions of Theorem 5.5.8
if deg f = 0 then

if δ(f, C) < s then
T ← {(f, C)}

else
T ← ∅

end if
else

if δ(f, C) ≤ s then
T ← {(f, C)}

else
Find the smallest K for which δf,C(k1, . . . , kr) ≥ s, where ki = K + 1 if xi is
minimal in the nesting ordering and xi = 0 otherwise
T ← ∅
for all xi a minimal variable, k ≤ K do

Let (g,D) be the 3-substitution of (∗, . . . , ∗, ki, ∗, . . . , ∗) into (f, C)
Recursively apply Algorithm 4 to (g,D) and s to obtain a set T ′

T ← T ∪ T ′
end for

end if
end if
return S

163

Proof of correctness for Algorithm 4. This algorithm is simply an algorithmic version

of the method described in the proof of Theorem 5.5.8, except that instead of pro-

ducing a set S of tuples which can be 3-substituted into (f, C), it directly produces

the 3-substitutions; it performs the substitutions described in the inductive step of

Theorem 5.5.8 and just leaves them substituted instead of pulling them back to find

tuples which can be 3-substituted in to yield them.

5.6.5 Algorithm 5: Truncating many polynomials to a given
defect.

And, as before, if we can truncate one polynomial, we can truncate many of them

(Algorithm 5):

Algorithm 5 Compute a good covering of Br from a covering set for Br

Require: r ∈ R, r ≥ 0, T a covering set for Br

Ensure: S is a good covering of Br

S ← ∅
for all (f, C) ∈ T do

Use Algorithm 4 to truncate (f, C) to r; call the result S ′
S ← S ∪ S ′

end for
return S

Proof of correctness for Algorithm 5. Algorithm 2 is exactly the method described in

the proof of Theorem 5.5.9. It can also be seen as an application of the correctness

of Algorithms 2 and 4.

5.6.6 Algorithm 6: Computing a good covering of Br.

We can then put this all together into Algorithm 6, for computing a good covering of

Br:

Algorithm 6 Compute a good covering of Br

Require: r ∈ R, r ≥ 0
Ensure: S is a good covering of Br

Use Algorithm 3 to compute a covering set T for Br

Use Algorithm 5 to compute a good covering S for Br from T
return T

164

Proof of correctness for Algorithm 6. This follows immediately from the correctness

of Algorithms 3 and 5.

We’ve now described how to compute good coverings of Br. But it still remains

to show how to use this to compute other quantities of interest, such as K(n) and

‖n‖st. We address this in the next section.

5.7 Algorithms: Computing stabilization length K(n) and sta-
ble complexity ‖n‖st

In order to compute K(n) and ‖n‖st, we’re going to have to be able to tell algorith-

mically whether, given a low-defect polynomial f and a number n, there exists k ≥ 0

such that f 3-represents 3kn. If we simply want to know whether f 3-represents n,

this is easy; because

f(3k1 , . . . , 3kr) ≥ 3k1+...+kr ,

we have an upper bound on how large the ki can be and we can solve this with brute

force. However, if we want to check whether it represents 3kn for any k, clearly this

will not suffice, as there are infinitely many possibilities for k. We will need a lemma

to narrow them down:

Lemma 5.7.1. Let f be a polynomial in r variables with nonnegative integer coeffi-

cients and nonzero constant term; write

f(x1, . . . , xr) =
∑

ai1,...,irx
i1
1 . . . x

ir
r

with ai1,...,ir positive integers and a0,...,0 > 0. Let b > 1 be a natural number and let

vb(n) denote the number of times n is divisible by b. Then for any k1, . . . , kr ∈ Z≥0,
we have

vb(f(bk1 , . . . , bkr)) ≤
∑

ai1,...,ir>0

(blogb ai1,...,irc+ 1)− 1.

In particular, this applies when f is a low-defect polynomial and b = 3.

Proof. The number f(bk1 , . . . , bkr) is the sum of the constant term a0,...,0 (call it simply

A0) and numbers of the form Aib
`i where the Ai are simply the remaining ai1,...,ir

enumerated in some order (say 1 ≤ i ≤ s). Since we can choose the order, assume

that vb(A1b
`1) ≤ . . . ≤ vb(Asb

`s).

So consider forming the number f(bk1 , . . . , bkr) by starting with A0 and adding in

the numbers Aib
`i one at a time. Let Si denote the sum

∑i
j=0Ajb

`j , so S0 = A0 and

165

Ss = f(bk1 , . . . , bkr). We check that for any i, we have

vb(Si) ≤
i∑

j=0

(blogbAjc+ 1)− 1. (5.1)

Before proceeding further, we observe that if for some i we have vb(Ai+1b
`i+1) >

vb(Si), then by assumption, for all j > i, vb(Ajb
`j) ≥ vb(Ai+1b

`i+1) > vb(Si). Now

in general, if vb(n) < vb(m), then vb(n + m) = vb(n). So we can see by induction

that for all j ≥ i, vb(Sj) = vb(Si): This is true for j = i, and if it is true for j, then

vb(Sj) = vb(Si) < vb(Ajb
`j) and so vb(Sj+1) = vb(Si).

So let h be the smallest i such that vb(Ai+1b
`i+1) > vb(Si). (If no such i exists,

take h = s.) Then we first prove that (5.1) holds for i ≤ h.

In the case that i ≤ h, we will in fact prove the stronger statement that

blogb Sic ≤
i∑

j=0

(blogbAjc+ 1)− 1;

this is stronger as in general it is true that vb(n) ≤ blogb nc. For i = 0 this is

immediate. So suppose that this is true for i and we want to check it for i+ 1, with

i + 1 ≤ h. Since i + 1 ≤ h, we have that vb(Ai+1b
`i+1) ≤ vb(Si). From this we can

conclude the inequality

blogb(Ai+1b
`i+1)c = `i+1 + blogbAi+1c

≤ vb(Ai+1b
`i+1) + blogbAi+1c ≤ vb(Si) + blogbAi+1c.

Now, we also know that

blogb Si+1c ≤ max{blogb Sic, blogb(Ai+1b
`i+1)c}+ 1. (5.2)

And we can observe using above that

blogb(Ai+1b
`i+1)c+ 1 ≤ blogb Sic+ blogbAi+1c+ 1 ≤

i+1∑
j=0

(blogbAjc+ 1)− 1.

We also know that

blogb Sic+ 1 ≤
i∑

j=0

(blogbAjc+ 1) ≤
i+1∑
j=0

(blogbAjc+ 1)− 1,

166

as blogbAi+1c+ 1 ≥ 1. So we can conclude using (5.2) that

blogb Si+1c ≤
i+1∑
j=0

(blogbAjc+ 1)− 1,

as desired.

Having proved (5.1) for i ≤ h, we then immediately obtain it for all i, as by the

above, for i ≥ h,

vb(Si) = vb(Sh) ≤
h∑
j=0

(blogbAjc+ 1)− 1 ≤
s∑
j=0

(blogbAjc+ 1)− 1;

this proves the claim.

5.7.1 Algorithm 7: Computing whether a polynomial 3-represents
some 3kn.

With this in hand, we can now write down Algorithm 7, found on page 167, for

determining if f 3-represents any 3kn:

Algorithm 7 Determine whether (f, C) 3-represents any 3kn and with what com-
plexities

Require: (f, C) a low-defect pair, n a natural number
Ensure: S is the set of (k, `) such that there exist whole numbers (k1, . . . , kr) with
f(3k1 , . . . , 3kr) = 3kn and C + 3(k1 + . . .+ kr) = `
S ← ∅
Determine v such that for any k1, . . . , kr, one has v3(f(3k1 , . . . , 3kr)) ≤ v {one
method is given by Lemma 5.7.1}
for i = 0 to v − v3(n) do

for all (k1, . . . , kr) such that k1 + . . .+ kr ≤ blog3 nc do
if f(3k1 , . . . , 3kr) = n then
S ← S ∪ {(k, C + 3(k1 + . . .+ kr))}

end if
end for

end for
return S

Proof of correctness for Algorithm 7. Once we have picked a v (which can be found

using Lemma 5.7.1), it suffices to check if f represents 3kn with k + v3(n) ≤ v. By

167

Proposition 5.2.8, for any k1, . . . , kr, we have

f(3k1 , . . . , 3kr) ≥ 3k1+...+kr ,

and so it suffices to check it for tuples (k1, . . . , kr) with k1 + . . .+kr ≤ blog3 nc. There

are only finitely many of these and so this can be done by brute force, and this is

exactly what the algorithm does.

5.7.2 Algorithm 8: Algorithm to test stability and compute
stable complexity

Now, at last, we can write down Algorithm 8, found on page 169, for computing

K(n) and ‖n‖st. We assume that in addition to n, we are given L, an upper bound

on ‖n‖, which may be ∞. Running Algorithm 8 with L = ∞ is always a valid

choice; alternatively, one may compute ‖n‖ or an upper bound on it before applying

Algorithm 8.

Proof of correctness for Algorithm 8. This algorithm progressively builds up good cov-

ers Si of Biα until it finds some i such that there is some (f, C) ∈ Si such that f̂

3-represents 3kn for some k ≥ 0. To see that this is indeed what it is doing, observe

that if

f(3k1 , . . . , 3kr)3kr+1 = 3kn,

then if k ≥ kr+1, we may write

f(3k1 , . . . , 3kr) = 3k−kr+1n

and so f itself 3-represents some 3kn, while if k ≤ kr+1, we may write

f(3k1 , . . . , 3kr)3kr+1−k = n

and so f̂ 3-represents n itself. And this is exactly what the inner loop does; it checks

if f 3-represents any 3kn using Algorithm 7, and it checks if f̂ 3-represents n using

brute force.

Now, if for a given i we obtain U = ∅, then that means that no 3kn is 3-represented

by any (f, C) ∈ Si, and so for any k, δ(3kn) ≥ iα, that is, δst(3
kn) ≥ iα. Conversely,

if for a given i we obtain U nonempty, then that means that some 3kn is 3-represented

by some (f, C) ∈ Si. Since for any (f, C) we have δ(f, C) ≤ iα (and this is strict if

deg f = 0), this means that δ(3kn) < iα, and so δst(n) < iα.

168

Algorithm 8 Compute K(n) and ‖n‖st
Require: n a natural number, L ∈ N ∪ {∞}, L ≥ ‖n‖
Ensure: (k,m) = (K(n), ‖n‖st)

Choose a step size α ∈ (0, 1) ∩R
Let r be the smallest nonnegative integer, or ∞, such that rα > L− 3 log3 n− 1
i← 1
U ← ∅
while U = ∅ and i ≤ r do

if i = 1 then
Let S1 be the output of Algorithm 1 for α {This is a good covering of Bα}

else
Use Algorithm 2 to compute a covering Si of Biα from coverings Sj of Bjα for
1 ≤ j < i
Use Algorithm 5 to turn Si into a good covering

end if
Optional step: Remove redundancies from Si as in Algorithm 2 {See “optional
step” there}
for all (f, C) ∈ Si do

Let U ′ be the output of Algorithm 7 on (f, C) and n {If r is finite and i < r
this whole loop may be skipped}
for all (k1, . . . , kr+1) such that k1 + . . .+ kr+1 ≤ blog3 nc do

if f̂(3k1 , . . . , 3kr+1) = n then
U ′ ← U ′ ∪ {(k, C + 3(k1 + . . .+ kr+1))}

end if
end for
U ← U ∪ U ′

end for
end while
if U = ∅ then

(k,m) = (0, L)
else

Let V consist of the elements (k, `) of U that minimize `− 3k
Choose (k, `) ∈ V that minimizes k
p← `− 3k

end if
return (k,m)

169

So we see that the algorithm if the algorithm exits the main loop with U nonempty,

it does so once has found some i such that there exists k with δ(3kn) < iα; equiva-

lently, once it has found some i such that δst(n) < iα. Or, equivalently, once it has

found some i such that δ(3K(n)n) < iα. Furthermore, note that 3K(n)n must be a

leader if K(n) > 0, as otherwise 3K(n)−1n would also be stable. So if K(n) > 0,

then 3K(n)n must be efficiently 3-represented by some (f, C) ∈ Si. Whereas if

K(n) = 0, then we only know that it is efficiently 3-represented by some (f̂ , C)

for some (f, C) ∈ Si, but we also know 3K(n)n = n. That is to say, the ordered pair

(K(n), ‖3K(n)n‖) must be in the set U .

In this case, where U is nonempty, it remains to examine the set U and pick out

the correct candidate. Each pair (k, `) ∈ U consists of some k and some ` such that

` ≥ ‖3kn‖. This implies that

δst(n) ≤ δ(3kn) ≤ `− 3k − 3 log3 n,

and so the pair (K(n), ‖3K(n)n‖) must be a pair (k, `) for which the quantity `−3k−
3 log3 n, and hence the quantity `− 3k, is minimized; call this latter minimum p. So

δst(n) = p− 3 log3 n.

(Note that this means that p = ‖n‖st.) Then the elements of V are pairs (k, p + 3k)

with

δ(3kn) ≤ p− 3 log3 n,

but we know also that

δ(3kn) ≥ δst(n) = p− 3 log3 n,

so we conclude that for such a pair, δ(3kn) = δst(n). But this means that 3kn is stable,

and so k ≥ K(n). But we know that K(n) is among the set of k with (k, p+ 3k) ∈ V ,

and so it is their minimum. Thus, we can select the element (k, `) ∈ V that minimizes

k; then k = K(n), and we can take k − 3` to find m = ‖n‖st.
This leaves the case where U is empty. In this case, we must have that for all i

with 1 ≤ i ≤ r, and hence in particular for i = r, no (f, C) in Si 3-represents any n3k;

i.e., no n3k lies in Brα, and hence, by Proposition 5.2.17, no n3k lies in Arα. That is

to say, for any k, δ(n3k) ≥ rα, and so

‖n3k‖ ≥ rα + 3 log3 n+ 3k > L+ 3k − 1.

170

Since ‖n3k‖ > L+ 3k− 1, and ‖n3k‖ ≤ L+ 3k, we must have ‖n3k‖ = L+ 3k. Since

this is true for all k ≥ 0, we can conclude that n is a stable number. So, n is stable

and ‖n‖ = L, that is to say, K(n) = 0 and ‖n‖st = ‖n‖ = L.

We have now proven Theorem 5.1.7:

Proof of Theorem 5.1.7. Algorithm 8, run with L =∞, gives us a way of computing

K(n) and ‖n‖st. Then, to check if n is stable, it suffices to check whether or not

K(n) = 0. This proves the theorem.

5.7.3 Algorithm 9: Determining leaders and the “drop pat-
tern”.

But we’re not done; we can go further. As mentioned in Section 5.1.2, we can get

more information if we go until we detect n, rather than stopping as soon as we detect

some 3kn. We now record Algorithm 9, found on page 172, for not only determining

K(n) and ‖3K(n)n‖, but for determining all k such that either k = 0 or 3kn is a leader,

and the complexities ‖3kn‖. By Proposition 5.2.17, this is enough to determine ‖3kn‖
for all k ≥ 0. One could also do this by using Algorithm 8 to determine K(n) and

then directly computing ‖3kn‖ for all k ≤ K(n), but Algorithm 9 will often be faster.

Proof of correctness for Algorithm 9. As in Algorithm 8, we are successively building

up good coverings Si of Biα, and for each one checking whether there is an (f, C) ∈ Si
and a k ≥ 0 such that (f̂ , C) 3-represents 3kn. However, the exit condition on the

loop is different; ignoring for a moment the possibility of exiting due to i > r, the

difference is that instead of stopping once some 3kn is 3-represented, we do not stop

until n itself is 3-represented, or equivalently, δ(n) < iα. We’ll use i here to denote

the value of i when the loop exits.

We want the set U to have two properties: Firstly, it should contain all the pairs

(k, `) we want to find. Secondly, for any (k, `) ∈ U , we should have ‖3kn‖ ≤ `. For

the first property, observe that if 3kn is a leader and k > 1, then

δ(3kn) ≤ δ(n)− 1 < L− 3 log3 n− 1,

and so δ(3kn) ≤ rα; thus, 3kn (being a leader) is efficiently 3-represented by some

(f, C) ∈ Sr, and so if the loop exits due to i > r, then (k, ‖3kn‖) ∈ U . Whereas if the

loop exits due to 0 ∈ π1(U), then note δ(3kn) ≤ δ(n) < iα, and so 3kn (again being a

leader) is efficiently 3-represented by some (f, C) ∈ Si, and so again (k, ‖3kn‖) ∈ U .

171

Algorithm 9 Compute information determining ‖3kn‖ for all k ≥ 0

Require: n a natural number, L ∈ N ∪ {∞}, L ≥ ‖n‖
Ensure: V the set of (k, `) where either k = 0 or k > 0 and 3kn is a leader, and
` = ‖3kn‖
Choose a step size α ∈ (0, 1) ∩R
Let r be the smallest nonnegative integer, or ∞, such that rα > L− 3 log3 n− 1
i← 1
U ← ∅
while 0 /∈ π1(U), where π1 is projection onto the first coordinate, and i ≤ r do

if i = 1 then
Let S1 be the output of Algorithm 1 for α {This is a good covering of Bα}

else
Use Algorithm 2 to compute a covering Si of Biα from coverings Sj of Bjα for
1 ≤ j < i
Use Algorithm 5 to turn Si into a good covering

end if
Optional step: Remove redundancies from Si as in Algorithm 2 {See “optional
step” there}
for all (f, C) ∈ Si do

Determine v such that for any k1, . . . , kr, one has v3(f(3k1 , . . . , 3kr)) ≤ v {one
method is given by Lemma 5.7.1} {If r is finite and i < r this whole loop may
be skipped}
Let U ′ be the output of Algorithm 7 on (f, C) and n
for all (k1, . . . , kr+1) such that k1 + . . .+ kr+1 ≤ blog3 nc do

if f̂(3k1 , . . . , 3kr+1) = n then
U ′ ← U ′ ∪ {(k, C + 3(k1 + . . .+ kr+1))}

end if
end for
U ← U ∪ U ′

end for
end while
if 0 /∈ π1(U) then
U ← U ∪ {(0, L)}

end if
Let V = {(k, `− 3k) : (k, `) ∈ U}
Let Vm consist of the minimal elements of V in the usual partial order
Let W = {(k, p+ 3k) : (k, p) ∈ Vm}
return W

172

This leaves the case where k = 0. If the loop exits due to 0 ∈ π1(U), then by choice of

i, n is efficiently 3-represented by some (f̂ , C) for some (f, C) ∈ Si, so (0, ‖n‖) ∈ U .

Whereas if the loop exits due to i > r, then this means that δ(n) ≥ rα, and so

‖n‖ ≥ rα + 3 log3 n > L− 1;

since we know ‖n‖ ≤ L, this implies ‖n‖ = L, and so including (0, L) in U means

(0, ‖n‖) ∈ U .

For the second property, again, there are two ways a pair (k, `) may end up in

U . One is that some low-defect pair (f, C) 3-represents the number 3kn, which, as

in the proof of correctness for Algorithm 8, means ‖3kn‖ ≤ `. The other is that

(k, `) = (0, L); but in this case, ‖n‖ ≤ L by assumption.

It then remains to isolate the pairs we want from the rest of U . We will show that

they are in fact precisely the minimal elements of U under the partial order

(k1, `1) ≤ (k2, `2) ⇐⇒ k1 ≤ k2 and `1 − 3k1 ≤ `2 − 3k2.

Say first that (k, `) is one of the pairs we are looking for, i.e, either k = 0 or 3kn

is a leader, and ` = ‖3kn‖. Now suppose that that (k′, `′) ∈ U such that k′ ≤ k and

` − 3k′ ≤ ` − 3k. Since (k′, `′) ∈ U , that means that ‖3k′n‖ ≤ `′. Since k′ ≤ k, we

conclude that

` = ‖3kn‖ ≤ `′ + 3(k − k′) (5.3)

and hence that `− 3k ≤ `′ − 3k′, so `− 3k = `′ − 3k′. Now, if k = 0, then certainly

k ≤ k′ (and so k = k′); otherwise, 3kn is a leader. Suppose we had k′ < k; then since

3kn is a leader, that would mean δ(3kn) < δ(3k
′
n) and hence

‖3kn‖ < ‖3k′n‖+ 3(k − k′) = `+ 3(k − k′),

contrary to 5.3. So we conclude k′ = k, and so (k, `) is indeed minimal.

Conversely, suppose that (k, `) is a minimal element of U in this partial order. We

must show that ` = ‖3kn‖, and, if k > 0, that 3kn is a leader. Choose k′ ≤ k as large

as possible with either k′ = 0 or 3k
′
n a leader, so that δ(3k

′
n) = δ(3kn). Also, let

`′ = ‖3k′n‖; by above, (k′, `′) ∈ U . Since (k, `) ∈ U and δ(3k
′
n) = δ(3kn), we know

that

‖3k′n‖+ 3(k − k′) = ‖3kn‖ ≤ `

and hence `′ − 3k′ ≤ ` − 3k. Since by assumption we also have k′ ≤ k, by the

173

assumption of minimality we must have (k′, `′) = (k, `). But this means exactly that

either k = 0 or 3kn is a leader, and that

‖3kn‖ = ‖3k′n‖ = `′ = `,

as needed.

5.7.4 Algorithm 10: Stabilization length and stable complex-
ity for n = 2k.

Finally, before moving on to the results of applying these algorithms, we make note

of one particular specialization of Algorithm 8, namely, the case where n = 2k and

` = 2k. As was noted in Section 5.1.3, this turns out to be surprisingly fast as a

method of computing ‖2k‖. We formalize it here:

Algorithm 10 Given k ≥ 1, determine K(2k) and ‖2k‖st
Require: k ≥ 1 an integer
Ensure: (h, p) = (K(2k), ‖2k‖st)

Let (h, p) be the result of applying Algorithm 8 with n = 2k and L = 2k.
return (h, p)

Proof of correctness for Algorithm 10. The correctness of Algorithm 10 follows from

the correctness of Algorithm 8 and the fact that ‖2k‖ ≤ 2k for k ≥ 1.

5.8 Results of computation

Armed with our suite of algorithms, we now proceed to the results of our computa-

tions. We can use Algorithm 10 to prove Theorem 5.1.2:

Proof of Theorem 5.1.2. Algorithm 10 was applied with k = 48, and it was deter-

mined that K(248) = 0 and ‖248‖st = 96, that is to say, that 248 is stable and

‖248‖ = 96, that is to say, that ‖2483`‖ = 96 + 3` for all ` ≥ 0. This implies that

‖2k3`‖ = 2k + 3` for all k ≤ 48 and ` ≥ 0 with k and ` not both zero, as if one

instead had ‖2k3`‖ < 2k + 3`, then writing 2483` = 248−k(2k3`), one would obtain

2483` < 96 + 3`.

But we can do more with these algorithms than just straightforward computation

of values of complexities and stable complexities. For instance, we can answer the

question: What is the smallest unstable defect other than 1?

174

In Chapter 2 it was determined that

Theorem 5.8.1. For any n > 1, if δ(n) < 12δ(2), then n is stable.

That is to say, with the exception of 1, all defects less than 12δ(2) are stable. This

naturally leads to the question, what is the smallest unstable defect (other than 1)?

We might also ask, what is the smallest unstable number (other than 1)? Interestingly,

among unstable numbers greater than 1, the number 107 turns out to be smallest both

by magnitude and by defect. However, if we measure unstable numbers (other than

1) by their unstable defect, the smallest will instead turn out to be 683. We record

this in the following theorem:

Theorem 5.8.2. We have:

1. The number 107 is the smallest unstable number other than 1.

2. Other than 1, the number 107 is the unstable number with the smallest defect,

and δ(107) = 3.2398 . . . is the smallest unstable defect other than 1.

3. Among nonzero values of δst(n) for unstable n, the number

δst(683) = δ(2049) = 2.17798 . . .

is the smallest.

Proof. For part (1), it suffices to use Algorithm 8 to check the stability of all numbers

from 2 to 106.

For parts (2) and (3), in order to find unstable numbers of small defect, we will

search for leaders of small defect which are divisible by 3. (Since if n is unstable,

then 3K(n)n is a leader divisible by 3, and δ(3K(n)n) < δ(n)). We use Algorithm 6 to

compute a good covering S of B21δ(2). Doing a careful examination of the low-defect

polynomials that appear, we can determine all the multiples of 3 that each one can

3-represent; we omit this computation, but its results are that the following multiples

of 3 can be 3-represented: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,

54, 57, 60, 63, 66, 72, 75, 78, 81, 84, 90, 96, 111, 114, 120, 126, 129, 132, 144, 162,

165, 168, 171, 180, 192, 225, 228, 231, 240, 252, 258, 264, 288, 321, 324, 330, 336, 360,

384, 480, 513, 516, 528, 576, 768, 1026, 1032, 1056, 1152, 1536, 2049, 2052, 2064,

2112, 2304, 3072, and, for k ≥ 0, numbers of the forms 12 · 3k + 3, 6 · 3k + 3, 9 · 3k + 3,

12 · 3k + 6, and 18 · 3k + 6.

175

For the individual leaders, we can easily check by computation that the only ones

which are leaders are 3, 321, and 2049. This leaves the infinite families. For these,

observe that if we divide them by 3, we get, respectively, 4 ·3k + 1, 2 ·3k + 1, 3 ·3k + 1,

2(2 · 3k + 1), and 2(3 · 3k + 1), and it is easy to check that any number of any of

those forms has defect less than 12δ(2) and hence is stable by Theorem 5.8.1; thus,

multiplying them by 3 cannot yield a leader.

So we conclude that the only leaders m with δ(m) < 21δ(2) are 3, 321, and 2049.

Therefore, the only unstable numbers n with δst(n) < 21δ(2) are 1, 107, and 683.

Note also that by the above computation, no power of 3 times any of 3, 321, or 2049

is a leader (as it would have to have smaller defect and would thus appear in the

list), and thus the numbers 3, 321, and 2049 are not just leaders but in fact stable

leaders. So to prove part (3), it suffices to note that, since δst(3) = 0, among δst(107)

(i.e. δ(321)) and δst(683) (i.e. δ(2049)), the latter is smaller.

This leaves part (2). Observe that δ(107) = δ(321) + 1. And if n is unstable, then

δst(n) ≤ δ(n) − 1. So if n > 1 is unstable and δ(n) < δ(107), then δst(n) < δ(321),

which by the above forces n = 683. But in fact, although δ(2049) < δ(107), we

nonetheless have δ(683) > δ(107) (because while δ(107) = δ(321) + 1, δ(683) =

δ(2049) + 2). Thus δ(107) is the smallest unstable defect other than 1, i.e., 107 is

(other than 1) the smallest unstable number by defect.

These computational results provide a good demonstration of the power of the

methods here.

176

Chapter 6

Open problems and future research

Having now demonstrated that numbers below a fixed defect are sparse; that the set

of defects is well-ordered, with order type ωω; that an analogous statement holds for

addition chains; and that the stable complexity ‖n‖st is computable, we now turn our

attention to the problems we have not solved. Some of the problems we discuss here

have been mentioned already in previous chapters, but they are worth mentioning

again.

6.1 Additional structure in the defect set

There seems to be additional structure in D , the set of all defects, and its variants.

The well-ordering theorems proved in Chapter 3 can be seen as slightly modified

versions of conjectures made earlier by J. Arias de Reyna[8], which are discussed in

Appendix A. Here, we present a reformulated version of Arias de Reyna’s Conjecture 8

and some related statements.

Let us begin with the “related statements”. In particular, the following conjecture:

Conjecture 6.1.1. We have

D = Dst = D + Z≥0 = Dst + Z≥0.

This statement may seem a little opaque, so before we continue, let us discuss

how these statement may be interpreted.

The new sets worth talking about here are the sets D + Z≥0 and Dst + Z≥0. It’s

easy to see that these two sets are equal, as by the propositions in Section 3.3, for

any n the difference δ(n)− δst(n) is an integer. But what do these sets mean? Let us

focus on D + Z≥0.
Suppose we have an element α ∈ D + Z≥0; write α = δ(n) + k, for some natural

177

number n and some integer k ≥ 0. (This representation may not be unique.) Then

α = (‖n‖+ k)− 3 log3 n.

Or, in other words,

α = `− 3 log3 n

for some ` ≥ ‖n‖. But to say that ` ≥ ‖n‖ is to say that ` is the number of 1’s in

some +, ·, 1-expression for n. So if we consider such expressions E, and denote by

‖E‖ the number of 1’s used in E, and denote by V (E) the value of E, then we can

write

D + Z≥0 = {‖E‖ − 3 log3 V (E) : E a +, ·, 1-expression}.

That is to say, it is the set of defects of expressions rather than the set of defects of

numbers. Thus, Conjecture 6.1.1 states that the set of defects of expressions is equal

to the closure of the set of defects of numbers.

It also says furthermore that, in fact, it is equal to the closure of the set of defects

of stable numbers; it’s less clear why this should be so. Nonetheless, computations of

good coverings of Br for small r support this conjecture.

We can also state the following more specific conjecture:

Conjecture 6.1.2. Moreover, if a is a congrunce class modulo 3, we have

Da = Da
st = (Da + 3Z≥0) ∪ (Da−1 + 3Z≥0 + 1) ∪ (Da−2 + 3Z≥0 + 2)

= (Da
st + 3Z≥0) ∪ (Da−1

st + 3Z≥0 + 1) ∪ (Da−2
st + 3Z≥0 + 2)

Conjecture 6.1.2 then says that the set of defects of expressions with complexity

congruent to a modulo 3, is equal to the closure of the set of defects of numbers with

complexity congruent to a modulo 3; this is the same phenomenon, just restricted to

one particular congruence class. And, again, the set of stable defects in that class

should suffice.

We now move on to a more straightforward reformulation of Arias de Reyna’s

Conjecture 8:

Conjecture 6.1.3 (Reformulated Arias de Reyna Conjecture 8). We have

Dst
′
= Dst + 1.

178

Moreover, if a is a congruence class modulo 3,

Da
st

′
= Da−1

st + 1.

(Here, for a set S, S ′ denotes its set of limit points.)

The second of these statements implies the first, but both are worth stating. Let

us focus on the first for now, because it is simpler. What does it mean? It tells us that

the set Dst (and hence D , if we believe Conjecture 6.1.1) has a sort of self-similarity

property.

Say we look at Dst ∩ {0}; it consists of the single point {0}. Now suppose we

look at Dst ∩ (0, 1]; it consists of the point 1 = 0 + 1, plus a sequence of points αn

tending to 1, for an overall order type of ω+ 1. Now suppose we look at Dst ∩ (1, 2] –

it consists of 2 = 1 + 1, the points αn + 1 tending to 2 – and for each αn, a sequence

of points αn,m tending to αn as m→∞. This yields an overall order type of ω2 + 1.

Of course, we already know that Dst ∩ (k − 1, k] has (for k ≥ 1 an order type of

ωk, so what’s the big deal? Well, this statement tells us something much stronger:

that the Dst ∩ (k− 1, k], is exactly the set Dst ∩ (k− 2, k− 1], except that, firstly, it’s

been shifted over by 1, and, secondly, each of the old elements has sprouted a new

sequence of elements leading up to it! This tells us considerably more than just that

the order type has been multiplied by ω; it’s been multiplied by ω in a very specific

way, by taking the existing elements and “pinning tails on them”.

The second statement is similar except it accounts for congruences modulo 3. But

notice that the congruence class on the right hand side of the equation, is different

from that on the left hand side of the equation; it states not that one set is similar to

itself, but that three sets are similar to each other in an intertwined manner. It does,

of course, imply that

Da
st

′′′
= Da

st + 3,

but the mechanism of this self-similarity passes through two other sets.

Our computations of good coverings for Br for small values of r support all these

conjectures; we may hope that the methods developed here may contribute to their

solution.

One may also make analogous conjectures for addition chains:

Conjecture 6.1.4. We have

D ` = D `
st = D ` + Z≥0 = D `

st + Z≥0.

179

Conjecture 6.1.5. We have

D `
st

′
= D ` + 1.

These are a stronger version of part (a) of Conjecture 4.8.1, and seem to be sup-

ported by computations so far. Note that there is nothing here about congruence

classes; as was noted in Section 1.2.3, those have no analogue for addition chains.

One may naturally then make the same conjectures for star chains. As with Conjec-

ture 4.8.1, it’s unclear to what other admissible classes of addition chains this might

extend.

6.2 Generalization to addition-multiplication chains

One generalization to other settings that has already been mentioned is that of

addition-multiplication chains (see Section 1.4.1). Addition-multiplication chains

have an an obvious disanalogy with integer complexity and addition chains; whereas

‖n‖ and `(n) are both Θ(log n), the lower bound on `AM(n) is Θ(log log n) [11], and

there is no corresponding Θ(log log n) upper bound [23], as discussed in Section 1.4.1.

But then, perhaps this is no more a barrier than the fact that `(n) ∼ log2 n, whereas

we expect that ‖n‖ � 3 log3 n. We can define, for n > 1,

δAM(n) := `AM(n)− log2 log2 n− 1

and then define

DAM := {δAM(n) : n ≥ 2}.

This then leads to the question:

Question 6.2.1. Is DAM well-ordered? Is its order type ωω? Is the order type of

DAM ∩ [0, k) equal to ωk for k ≥ 1 an integer?

Some limited evidence suggests that, at least, DAM ∩ [0, 1) may be well-ordered

with order type ω.

6.3 Complexity based on a number other than 1

Another less obvious direction is to consider a generalization of integer complexity

based on expressions with addition, multiplication, and a fixed positive real number

x which is not necessarily 1. This is, after all, moving things back in the direction

of the original Mahler and Popken paper[38]. Now, this is straying from the overall

theme of this dissertation a bit, in that this doesn’t necessarily yield a sensible notion

180

of complexity for natural numbers – if x is anything other than 1, one will either not

be able to generate all natural numbers in this way, or else will be able to generate

numbers that are not natural numbers at all. Nonetheless, it is possible to make this

idea sensible by taking a different point of view – a point of view that was taken

already in Section 6.1 in explaining the meaning of Conjecture 6.1.1.

Instead of considering the numbers that we are taking the complexity of as the

primary thing, let’s consider +, ·, x-expressions. For such an expression E, define ‖E‖
to be the number of x’s used in the expression, and V (E) to be the actual value of

the expression when evaluated. Then one can define, for such an expression E,

δx(E) = ‖E‖ − logθ(x) V (E)

where

θ(x) := max
k∈N

k
√
kx

as in [38]. Then one can define Dx to be the set of all δx(E), for all +, ·, x-expressions

E. Note that Dx is analogous not to the set D , but rather to the set D + Z≥0, as

described in Section 6.1. Then we can once again ask:

Question 6.3.1. Is Dx well-ordered? Is its order type ωω? Is the order type of

Dx ∩ [0, k) equal to ωk for k ≥ 1 an integer?

Some experimental evidence suggests the answer may be “yes”, though it is diffi-

cult to tell, especially for x < 1.

6.4 Further stabilization hypotheses

There are two directions we can go in terms of “further stabilization hypotheses”.

The more obvious one is to consider what happens when we multiply by powers of

numbers other than 3. For instance, does a similar stabilization phenomenon happen

with powers of 2? That is to say, for any n, does there exist a K such that for all

k ≥ K, one has

‖2kn‖ = 2(k −K) + ‖2Kn‖?

This question seems like it would be very difficult, though; an affirmative answer

would suffice to imply

‖2k‖ = 2k

for k ≥ 1, which is already out of reach.

181

A stabilization hypothesis which seems more approachable is J. Arias de Reyna’s

Conjecture 2 from [8]. The conjecture has some minor oversights as stated there, so

we state a slightly different version, which we also strengthen slightly:

Conjecture 6.4.1. Let a be a natural number, and suppose that a is stable. Then,

for sufficiently large k,

‖a3k + 1‖ = ‖a‖+ 3k + 1,

and a3k + 1 is stable.

Moreover, let a and b be natural numbers, and suppose that ab is stable and that

‖ab‖ = ‖a‖+ ‖b‖. Then, for sufficiently large k,

‖b(a3k + 1)‖ = ‖a‖+ ‖b‖+ 3k + 1,

and b(a3k + 1) is stable.

This conjecture is in line with our observations made in the process of computing

good coverings. It seems to be related to Conjecture 6.1.3. It’s possible there may be

analogues for low-defect polynomials in more variables, but it’s less clear how these

would work.

6.5 Instability

Although in Chapter 5 we have given a means to compute K(n) – the stabilization

length for integer complexity – we have not provided any explicit upper bound on it.

The same is true for the quantity

∆(n) := ‖n‖ − ‖n‖st = δ(n)− δ(n)st,

which is another way of measuring “how unstable” the number n is, and which, due

to the results of Chapter 5, is also now computable. Nor do we have any reliable

method of generating unstable numbers with which to demonstrate lower bounds.

Indeed, empirically, large instabilities – measured either by K(n) or by ∆(n) –

seem to be rare. Note that this statement is not based on running the algorithms

from Chapter 5 on many numbers to determine their stability, as that is quite slow

in general, but rather on simply computing ‖n‖ for n ≤ 315 and then checking ‖n‖,
‖3n‖, ‖9n‖,. . . , and guessing that n is stable if no instability is detected before the

data runs out, a method that can only ever put lower bounds on K(n) and ∆(n),

never upper bounds. Still, numbers that are detectably unstable at all seem to be

182

Table 6.1: Numbers that seem to have unusual drop patterns. Here, the “drop
pattern” of n is the list of values δ(3kn)−δ(3k+1n), or equivalently ‖3kn‖−‖3k+1n‖+
3, up until the point where this is always zero. This table is empirical, based on a
computation of ‖n‖ for n ≤ 315; it’s possible these numbers have later drops further
on. Numbers which are divisible by 3 are not listed.

Drop pattern Numbers with this pattern
4 4721323
1, 2 1081079
2, 1 203999, 1328219
1, 0, 0, 1 153071, 169199

somewhat rare, although they still seem to make up a positive fraction of all natural

numbers; namely, around 3%. Numbers that are more than merely unstable – having

K(n) ≥ 2 or ∆(n) ≥ 2 – are yet rarer.

The largest lower bounds on K(n) or ∆(n) for a given n encountered based on

these computations are n = 4721323, which, as mentioned earlier, has ‖3n‖ < ‖n‖
and thus ∆(n) ≥ 4; and 17 numbers, the smallest of which is n = 3643, which have

‖35n‖ < ‖34n‖ + 3 and thus K(n) ≥ 5. Finding n where both K(n) and ∆(n) are

decently large is hard; for instance, these computations did not turn up any n for

which it could be seen that both K(n) ≥ 3 and ∆(n) ≥ 3. (See Table 6.1 for more.)

It’s not even clear whether K(n) or ∆(n) can get arbitrarily large, or are bounded

by some finite constant, although there’s no clear reason why the latter would be so.

Still, this is worth pointing out as a question:

Question 6.5.1. Is there a natural density of the set of unstable numbers? What is

an explicit upper bound on K(n), or on ∆(n)? Can K(n) and ∆(n) get arbitrarily

large, or are they bounded?

We can also ask the analogous questions regarding addition chain length. Let

K`(n) denote the smallest k such that 2kn is `-stable, and define ∆`(n) by

∆`(n) := `(n)− `st(n) = δ`(n)− δ`st(n),

analogous to our measures of instability for integer complexity. Then we can again

ask:

Question 6.5.2. Is there a natural density of the set of `-unstable numbers? What is

an explicit upper bound on K`(n), or on ∆`(n)? Can K`(n) and ∆`(n) get arbitrarily

large, or are they bounded?

183

Of course, we still have not even shown that K`(n) and ∆`(n) are computable; see

Section 6.7. Still, the questions make sense all the same. Meanwhile, computations

by Neil Clift [18] have found that for n = 30958077 we have `(n) = `(2n) = `(4n) (so

that K`(n) ≥ 2 and ∆`(n) ≥ 2), and that for n = 375494703 we have `(2n) = `(n)−1,

so ∆`(n) ≥ 2. These are, at present, the only known examples of n for which it is

known that K`(n) ≥ 2 or ∆`(n) ≥ 2. So while large instabilities seems to be rare

for integer complexity, they may be even more rare for addition chains. For addition

chains, however, in contrast to the case of integer complexity, it is known how to find

infinitely many unstable numbers; E. G. Thurber [50] showed that for all k ≥ 5, the

number n = 23 · 2k + 7 has `(2n) = `(n). We can also ask the analogous questions for

star chains, Hansen chains, and other admissible sets of addition chains.

6.6 Counting problems

We consider two sorts of counting problems regarding integer complexity. The first is

that of refining Theorem 2.6.6, getting better estimates for Ar(x) and Br(x). Ideally

we would like a theorem of the form

Br(x) = Cr(log3)
brc +Or((log x)brc−1)

Ar(x) = C ′r(log3)
brc+1 +Or((log x)brc)

for explicit constants Cr and C ′r. (Although it may be preferable to use Ar and Br

here; see Appdendix B for some examples of theorems that can be phrased more

naturally in terms of Ar and Br rather than Ar and Br. In this case, making this

switch would at least allow us to not have to exclude the case of r = 0.) J. Zelinsky

has suggested that, if such estimates can be refined enough, it may be possible to use

them to prove that ‖n‖ � 3 log3 n.

The other sort of counting problem is that of counting particular types of numbers

relevant to integer complexity – how common is it for numbers to be unstable? How

common is it for numbers to be m-irreducible, or to be solid (additively irreducible)?

Empirically, it seems that all these types of numbers make up a positive fraction of

the natural numbers. Specifically, it seems that about 3% of numbers are unstable,

about 63% of numbers are solid, and about 18% of numbrs are m-irreducible. On the

addition chain side of things, we can also ask how common `-unstable numbers are.

Question 6.6.1. Is there a natural density of the set of unstable numbers? The set

of solid numbers? The set of m-irreducible numbers?

184

Question 6.6.2. Is there a natural density of the set of `-unstable numbers?

We can also consider the same thing for star chains, Hansen chains, or other

admissible sets of addition chains.

6.7 Computability and complexity-theoretic problems

There remains from Chapter 5 the problem of determining the computational com-

plexity of the various functions considered there. As has been noted earlier, the best

known algorithm for computing ‖n‖ (due to Srinivas and Shankar [44]) takes time

O(nlog2 3). It is also known[8] that the problem “Given n and k in binary, is ‖n‖ ≤ k?”

is in the class NP , because the size of a witness is O(log n). (This problem is not

known to be NP -complete.) However, it’s not clear whether the problem “Given n

and k in binary, is ‖n‖st ≤ k?” is in the class NP , because there’s no obvious bound

on the size of a witness. It is quite possible that it could be proven to be in NP ,

however, if an explicit upper bound could be obtained on K(n).

We can also consider the problem of computing the defect ordering, i.e., “Given

n1 and n2 in binary, is δ(n1) ≤ δ(n2)?”; as noted in Chapter 3, this problem lies in

∆P
2 in the polynomial hierarchy. We can similarly consider the problem of the stable

defect ordering – “Given n1 and n2 in binary, is δst(n1) ≤ δst(n2)?” Again, due to a

lack of bounds on K(n), it’s not clear that this lies in ∆P
2 .

We can also ask about the complexity of computing K(n), or ∆(n) (which, con-

ceivably, could be easier than ‖n‖ or ‖n‖st, though this seems unlikely), or, perhaps

most importantly, of computing a good covering of Bs for a given s ≥ 0. Note that

in this last case, it need not be the set Ts constructed by the methods of Chapter 5;

we just want any good covering of Bs. Of course, we must make a restriction on the

input for this last question, as one cannot actually take arbitrary real numbers as

input; perhaps it would be appropriate to restrict to s of the form

s ∈ {p− q log3 n : p, q ∈ Q, n ∈ N}.

We summarize:

Question 6.7.1. What is the complexity of computing ‖n‖? Of ‖n‖st? Of the dif-

ference ∆(n)? Of the defect ordering δ(n1) ≤ δ(n2)? Of the stable defect ordering

δst(n1) ≤ δst(n2)? Of the stabilization length K(n)?

Question 6.7.2. Given s = p − q log3 n, with p, q ∈ Q and n ∈ N, what is the

complexity of computing a good covering Ts of Bs?

185

Meanwhile, for addition chains, it still remains to be shown that K`(n) and `st(n)

are computable.

6.8 Remaining computational problems

As has been mentioned above, there is still the problem of showing that K`(n) and

`st(n) are effectively computable. But there are also remaining computational prob-

lems regarding integer complexity.

For instance, given a real number r ≥ 0, can we compute the order type of

D ∩ [0, r)? There is an “obvious” algorithm to do this – take a good covering T
of Br; sort the pairs (f, C) in order of increasing δ(f, C); to each distinct value α

of δ(f, C) assign the ordinal ωk, where k is the largest degree of some (f, C) with

δ(f, C) = α; then add up these ordinals, in order. But proving that this algorithm

actually works is not so easy, because low-defect pairs do not, in general, efficiently

3-represent all the numbers that they 3-represent. So it remains to be determined

whether, in fact, this algorithm might work regardless.

Similar to the above problem is that of whether the order isomorphism between

D and ωω is computable. This is largely the same, though; if one has an algorithm to

determine the order type of D∩[0, r), it can be adapted to answer this question. And,

of course, the same question can be asked for D ` and ωω. But this seems substantially

further away from being solved.

With this, we conclude. Some of the problems above seem to be well out of reach

at present. We can hope that the method of defects and low-defect polynomials will

be able to resolve some of the easier ones.

186

Appendix A

Conjectures of J. Arias de Reyna

This appendix deals with the results of Chapter 3. In his paper “Complejidad de los

números naturales,” [8] Juan Arias de Reyna proposed a series of conjectures about

integer complexity. These conjectures also proposed a structure to integer complexity

described by ordinal numbers, using a different language. These conjectures make

assertions similar in spirit to some of the results in Chapter 3. Below we prove

modified versions of his conjectures 5 through 7.

The conjectures deal with the quantity n3−b‖n‖/3c, which is related to (in fact,

determined by) the quantity δ(n). We recall first the formula for the largest number

writable with k ones which was proved by Selfridge (see [29]).

Definition A.0.1. Let E(k) denote the largest number writable with k ones, i.e.,

the largest number with complexity at most k.

Theorem A.0.2 (Selfridge). The number E(k) is given by the following formulae:

E(1) = 1

E(3j) = 3j

E(3j + 2) = 2 · 3j

E(3j + 4) = 4 · 3j

Based on this, in Chapter 2, we showed:

Proposition A.0.3. We have δ(1) = 1 and

δ(n) =


3 log3

E(‖n‖)
n

if ‖n‖ ≡ 0 (mod 3),

3 log3
E(‖n‖)
n

+ 2 δ(2) if ‖n‖ ≡ 1 (mod 3), with n > 1,

3 log3
E(‖n‖)
n

+ δ(2) if ‖n‖ ≡ 2 (mod 3).

187

That is to say, for n > 1, given the congruence class of ‖n‖ modulo 3, the quantity

nE(‖n‖)−1 is a one-to-one and order-reversing function of δ(n).

As noted above, whereas in Chapter 2 we considered nE(‖n‖)−1, Arias de Reyna

considered n3−b‖n‖/3c. However, this is much the same thing:

Proposition A.0.4. For k > 1,

E(k) = c3b
k
3
c

where

c =


1 if k ≡ 0 (mod 3),

4/3 if k ≡ 1 (mod 3),

2 if k ≡ 2 (mod 3).

So for n > 1, within each congruence class of ‖n‖modulo 3, the quantity n3−b‖n‖/3c

is also a one-to-one and order-reversing function of δ(n), being the same as nE(‖n‖)−1

up to a constant factor.

This allows us to conclude the following result, which is a modified version of

what one gets if one combines Arias de Reyna’s Conjectures 5, 6, and 7 with his

Conjectures 3 and 4.

Theorem A.0.5. (Modified Arias de Reyna Conjectures 5, 6, 7)

For a = 0, 1, 2, the sets{ n

3b‖n‖/3c
: ‖n‖ ≡ a (mod 3), n stable

}
are reverse well-ordered, with reverse order type ωω.

Equivalently, for a = 0, 1, 2, so are the sets{
n

E(‖n‖)
: ‖n‖ ≡ a (mod 3), n stable

}
.

Proof. By Propositions A.0.3 and A.0.4, each of these is the image of some Da
st under

an order-reversing function.

188

Appendix B

Good coverings of closed intervals

The theorems in Chapters 2, 3, and 5 about Ar and Br, and how to build up coverings

for them, etc., are formulated in terms of Ar and Br, which are defined by the strict

inequality δ(n) < r. In many contexts, however, it is more natural to consider the

nonstrict inequality δ(n) ≤ r. So let us define:

Definition B.0.6. For a real number r ≥ 0, the set Ar is the set {n ∈ N : δ(n) ≤ r}.
The set Br is the set of all elements of Ar which are leaders.

We can then also define:

Definition B.0.7. A finite set S of low-defect pairs will be called a covering set for

Br if, for every n ∈ Br, there is some low-defect pair in S that efficiently 3-represents

it. We will say S is a good covering of Br if, in addition, every (f, C) ∈ S satisfies

δ(f, C) ≤ r.

One can then write down theorems about Ar and Br similar to those in Chapters 2,

3, and 5 about Ar and Br. We will state them here without proof, as the proofs are

the same except for the strictnesses of some of the inequalities.

Theorem B.0.8. For any real 0 ≤ α < 1, Bα is a finite set.

Lemma B.0.9. Let x1, x2, . . . , xr > 0 be real numbers such that
∑r

i=1 xi ≤ k + 1,

where k ≥ 1 is a natural number.

1. If k ≥ 2 then either there is some i with xi > k, or else we may find a partition

A ∪B of the set {1, 2, . . . , r} such that∑
i∈A

xi ≤ k,
∑
i∈B

xi ≤ k.

189

2. If k = 1 then either there is some i with xi > 1, or else we may find a partition

A ∪B ∪ C of the set {1, 2, . . . , r} such that∑
i∈A

xi ≤ 1,
∑
i∈B

xi ≤ 1,
∑
i∈C

xi ≤ 1.

Theorem B.0.10. Suppose that 0 < α < 1 and that k ≥ 1. Then any n ∈ B(k+1)α

can be most-efficiently represented in (at least) one of the following forms:

1. For k = 1, there is either a good factorization n = u · v where u, v ∈ Bα, or a

good factorization n = u · v · w with u, v, w ∈ Bα;

For k ≥ 2, there is a good factorization n = u · v where u ∈ Biα, v ∈ Bjα with

i+ j = k + 2 and 2 ≤ i, j ≤ k.

2. n = a+ b with ‖n‖ = ‖a‖+ ‖b‖, a ∈ Akα, b ≤ a a solid number and

δ(a) + ‖b‖ ≤ (k + 1)α + 3 log3 2.

3. There is a good factorization n = (a + b)v with v ∈ Bα, a + b being a most-

efficient representation, and a and b satisfying the conditions in the case (2)

above.

4. n ∈ Tα (and thus in particular either n = 1 or ‖n‖ = ‖n− 1‖+ 1.)

5. There is a good factorization n = u · v with u ∈ Tα and v ∈ Bα.

(Note here that we do not need to change the definition of Tα.)

Theorem B.0.11. Suppose that 0 < α < 1 and that k ≥ 1. Further suppose that

S1,α,S2,α, . . . ,Sk,α are covering sets for Bα, B2α, . . . ,Skα, respectively. Then we can

build a covering set Sk+1,α for B(k+1)α as follows:

1. If k + 1 > 2, then for (f, C) ∈ Si,α and (g,D) ∈ Sj,α with 2 ≤ i, j ≤ k and

i+ j = k + 2 we include (f ⊗ g, C +D) in Sk+1,α;

while if k + 1 = 2, then for (f1, C1), (f2, C2), (f3, C3) ∈ S1,α, we include (f1 ⊗
f2, C1 + C2) and (f1 ⊗ f2 ⊗ f3, C1 + C2 + C3) in S2,α.

2. For (f, C) ∈ Sk,α and any solid number b with ‖b‖ ≤ (k + 1)α + 3 log3 2, we

include (f ⊗ x1 + b, C + ‖b‖) in Sk+1,α.

3. For (f, C) ∈ Sk,α, any solid number b with ‖b‖ ≤ (k + 1)α + 3 log3 2, and any

v ∈ Bα, we include (v(f ⊗ x1 + b), C + ‖b‖+ ‖v‖) in Sk+1,α.

190

4. For all n ∈ Tα, we include (n, ‖n‖) in Sk+1,α.

5. For all n ∈ Tα and v ∈ Bα, we include (vn, ‖vn‖) in Sk+1,α.

Theorem B.0.12. For any real r ≥ 0, there exists a finite covering set Sr for Br.

Furthermore, we can choose Sr such that each (f, C) ∈ Sr has degree at most brc.

Theorem B.0.13. Let (f, C) be a low-defect pair, say of degree r, let s ≥ 0 be a real

number, and let S = {(k1, . . . , kr) : δf,C(k1, . . . , kr) ≤ s}. Then there exists a finite

set T ⊆ (Z≥0 ∪ {∗})r such that:

1. We have S =
⋃
p∈T S(p).

2. For each p in T , the set of i for which ki 6= ∗ corresponds to a subset of the

variables of f which is downward closed (under the nesting ordering); hence if

(g,D) denotes the 3-substitution of p into (f, C), then (g,D) is a truncation of

(f, C). Furthermore, we have δ(g,D) ≤ s, and hence deg g ≤ bsc.

Theorem B.0.14. For any real s ≥ 0, there exists a finite good covering Ss of Bs.

191

Appendix C

Implementation notes

In this appendix we make some notes about the author’s implementation of the al-

gorithms of Chapter 5 and other ways they could be implemented.

We have actually not implemented Algorithm 8 and Algorithm 9 in full generality,

where L may be arbitrary; we have only implemented the case where L = ∞, the

case where L = ‖n‖ (computed beforehand), and the case of Algorithm 10.

As was mentioned in Section 5.1.3, the step size in the author’s implementation

has been fixed at α = δ(2), with the sets Bα and Tα precomputed. Other integral

multiples of δ(2) were tried, up to 9δ(2) (since 10δ(2) > 1 and thus is not a valid step

size), but these all seemed to be slower, contrary to the author’s expectation. Another

variation with a similar flavor is that one could write a version of this algorithm with

nonstrict inequalities, computing numbers n with δ(n) ≤ r for a given r, rather than

δ(n) < r, as discussed in Appendix B. This was not tried.

It is also worth noting that the check for whether a given polynomial f 3-represents

a given number n can also be sped up. If f is a low-defect polynomial with leading

coefficent a, maximum coefficient A, and N terms, then

a3k1+...+kr ≤ f(3k1 , . . . , 3kr) ≤ A3k1+...+kr ,

so we only need to search (k1, . . . , kr) with

dlog3

n

NA
e ≤ k1 + . . .+ kr ≤ blog3

n

a
c,

a stricter condition than was described in the algorithms above. This improvement

is, in fact, used in the author’s implementation. It is also possible that there is a

better way than brute force.

As was mentioned in Section 5.7, when running Algorithm 8 or Algorithm 9 with

L finite, one can omit the 3-representation check at intermediate steps. We have only

192

implemented this variant for Algorithm 10.

It was mentioned in Section 5.4.3 that considering “low-defect expression pairs”

(E,C) or “low-defect tree pairs” (T,C) (where E is a low-defect expression, T is a

low-defect tree, and C ≥ ‖E‖ or C ≥ ‖T‖, as appropriate) may be useful. In fact,

the author’s implementation works with a tree representation essentially the same as

low-defect trees and low-defect tree pairs. Among other things, this makes it easy to

find the minimal variables to be substituted into. If one were actually representing

low-defect polynomials as polynomials, this would take some work. There is a slight

difference in that, rather than simply storing a base complexity C ≥ ‖T‖, it stores

for each vertex or edge – say with label ‖n‖ – a number k such that k ≥ ‖n‖, unless

we are talking about a non-leaf vertex and n = 1, in which case k = 0. We can

then determine a C by adding up the values of k (as per Proposition 5.4.23). That is

to say, the complexity, rather than being attributed to the whole tree, is distributed

among the parts of the tree responsible for it; this makes it easier to check for and

remove redundant low-defect pairs.

It was also mentioned in Section 5.4.3 that one could use a representation similar

to low-defect expressions, but with all the integer constants replaced with +, ·, 1-

expressions for same. E.g., instead of 2(2x+ 1), one might have (1 + 1)((1 + 1)x+ 1).

We have not implemented this, but doing this woud have one concrete benefit: It

would allow the algorithms above to not only determine the complexity of a given

number n, but also to give a shortest representation. (And analogously with stable

complexity.) The current implementation cannot consistently do this in a useful

manner. For instance, suppose that we ran Algorithm 10 and found some k with

‖2k‖ = 2k − 1. We might then look at the actual low-defect pair (f, C) that 3-

represented it, to learn what this representation with only 2k − 1 ones is. But it

might turn out, on inspection, that f was simply the constant 2k; this would not

be very enlightening. Using +, ·, 1-expressions would remedy this, as would having

low-defect pairs keep track of their “history” somehow.

As was mentioned in Section 5.5.2, it’s possible to write numerical versions of

Proposition 5.5.6, that say exactly how far out one has to go in order to get within

a specified ε of the limit δ(f, C); one could use this in Algorithm 4 instead of simply

searching larger and larger K until one works. This was tried but found to be slower.

Finally, it is worth expanding here on the remark in Section 5.1.3 that it is possible

to write Algorithm 8 and Algorithm 8 without using truncation. Surprisingly little

modification is required; the only extra step needed is that, in order to check if n (or

any 3kn) has defect less than iα, instead of just checking if a low-defect pair (f, C)

193

(or its augmented version) 3-represents n (or any 3kn), if one finds that indeed n =

f(3k1 , . . . , 3kr) (or the appropriate equivalent), one must additionally check whether

δf,C(k1, . . . , kr) < iα, since this is no longer guaranteed in advance. We will not

state a proof of correctness here; it is similar to the proofs above. Such no-truncation

versions of the algorithms were tried, but found to be too slow to be practical, because

of the time needed to check whether the resulting polynomials 3-represented a given

number. Another possibility, in the case where one is using a cutoff, is to truncate

only at the final step, and not at the intermediate steps; this has not been tried. If

this is used, it should probably be combined with not checking whether n (or any

3kn) is 3-represented until the final step, for the reason just stated.

194

Appendix D

Leaders with defect at most 1

What follows is a table of all leaders of defect at most 1, sorted by defect.

Table D.1: Leaders of defect at most 1

Index Leader Decomposition Complexity Defect
0 3 2 + 1 3 0
1 2 1 + 1 2 δ(2) ≈ 0.1072
2 4 22 = 3 + 1 4 2δ(2) ≈ 0.2144
3 8 23 6 3δ(2) ≈ 0.3216
4 16 24 8 4δ(2) ≈ 0.4288
5 32 25 10 5δ(2) ≈ 0.5361
6 5 4 + 1 5 δ(5) ≈ 0.6051
7 64 26 12 6δ(2) ≈ 0.6433
8 7 2 · 3 + 1 6 δ(7) ≈ 0.6863
9 10 2 · 5 = 32 + 1 7 δ(5) + δ(2) ≈ 0.7123

10 128 27 14 7δ(2) ≈ 0.7505
11 14 2 · 7 8 δ(7) + δ(2) ≈ 0.7935
12 20 2 · 10 9 δ(5) + 2δ(2) ≈ 0.8195
13 256 28 16 8δ(2) ≈ 0.8577
14 28 22 · 7 = 33 + 1 10 δ(7) + 2δ(2) ≈ 0.9007
15 40 2 · 20 11 δ(5) + 3δ(2) ≈ 0.9267
16 19 2 · 32 + 1 9 δ(19) ≈ 0.9596
17 512 29 18 9δ(2) ≈ 0.9649
18 82 34 + 1 13 δ(82) ≈ 0.9665
19 244 35 + 1 16 δ(244) ≈ 0.9888
20 13 4 · 3 + 1 8 δ(13) ≈ 0.9958

21 + k 3k+6 + 1 3k+6 + 1 3(k + 6) + 1 1− 3 log3(1 + 3−(k+6))
ω 1 1 1 1

195

References

[1] H. Altman, Addition Chains and Well-Ordering, in preparation.

[2] H. Altman, Integer Complexity and Well-Ordering, arXiv:1310.2894, 2013

[3] H. Altman, Integer Complexity: Computational Methods and Results, in prepa-
ration.

[4] H. Altman, Integer Complexity: The Integer Defect, in preparation.

[5] H. Altman, Refined Estimates for Counting Numbers of Low Defect, in prepa-
ration.

[6] H. Altman and J. Arias de Reyna, Integer Complexity, Stability, and Self-
Similarity, in preparation

[7] H. Altman and J. Zelinsky, Numbers with Integer Complexity Close to the Lower
Bound, Integers 12 (2012), no. 6, 1093–1125.

[8] J. Arias de Reyna, Complejidad de los números naturales, Gaceta R. Soc. Mat.
Esp., 3 (2000), 230–250.

[9] J. Arias de Reyna and J. Van de Lune, Algorithms for determining integer com-
plexity, arXiv:1404.2183, 2014

[10] J. Arias de Reyna and J. Van de Lune, “How many 1’s are needed?” revisted,
arXiv:1404.1850, 2014

[11] H. M. Bahig, On a generalization of addition chains: Addition-multiplication
chains, Discrete Mathematics 308 (2008), 611–616.

[12] H. M. Bahig and H. M. Bahig, A new strategy for generating shortest addition
sequences, Computing 91 (2011), 285–306.

[13] L. Blum, F. Cucker, M. Shub, S. Smale, Algebraic Settings for the Problem
“P 6= NP?”,

[14] P. Borwein, J. Hobart, The Extraordinary Power of Division in Straight Line
Programs, American Mathematical Monthly 119 (2012), 584–592.

[15] A. Brauer, On Addition Chains, Bull. Amer. Math. Soc., 45 (1939), 736–739.

196

[16] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory,
Springer-Verlag, Berlin, 1997

[17] P. W. Carruth, Arithmetic of ordinals with applications to the theory of ordered
abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262–271.

[18] N. M. Clift, Calculating optimal addition chains, Computing 91 (2011), 265–284.

[19] J. H. Conway, On Numbers and Games, Second Edition, A K Peters, Ltd., Nat-
ick, Massachusetts, 2001, pp. 3–14.

[20] A. Cottrell, A lower bound for the Scholz-Brauer problem, PhD. Dissertation,
University of California, Berkeley (1974)

[21] D. H. J. De Jongh and R. Parikh, Well-partial orderings and hierarchies, Indag.
Math. 39 (1977), 195-206.

[22] H. Dellac, Interméd. Math. 1 (1894), 162–164.

[23] W. De Melo and B. F. Svaiter, The Cost of Computing Integers,
Proc. Amer. Math. Soc. 124 (1996), 1377–1378.

[24] P. Downey, B. Leong, and R. Sethi, Computing Sequences with Addition Chains,
SIAM J. Comput. 10 (1981), 638–646.

[25] S. Fomin, D. Grigoriev and G. Koshevoy, Subtraction-free complexity, cluster
transformations and spanning trees, arXiv:1307.8425.

[26] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman: San Francisco 1979

[27] A. A. Gioia, M. V. Subbarao, and M. Sugunamma, The Scholz-Brauer Problem
in Addition Chains, Duke Math. J., 29 (1962), 481–487.

[28] D. Grigoriev, Lower bounds in algebraic complexity, J. Soviet Math. 29 (1985),
1388–1425.

[29] R. K. Guy, Some suspiciously simple sequences, Amer. Math. Monthly, 93 (1986),
186–190; and see 94 (1987), 965 & 96 (1989), 905.

[30] R. K. Guy, Unsolved Problems in Number Theory, Third Edition, Springer-
Verlag, New York, 2004, pp. 399–400.

[31] W. Hansen, Zum Scholz-Brauerschen Problem, J. Reine Angew. Math. 202
(1959), 129–136.

[32] J. Iraids, personal communication.

[33] J. Iraids, K. Balodis, J. Čerņenoks, M. Opmanis, R. Opmanis, K. Podnieks.
Integer Complexity: Experimental and Analytical results, arXiv:1203.6462, 2012

197

[34] M. Jerrum and M. Snir, Some Exact Complexity Results for Straight-Line Com-
putations over Semirings, J. ACM 29 (1982), 874–897.

[35] D. E. Knuth, The Art of Computer Programming, Vol. 2, Third Edition, Addison-
Wesley, Reading, Massachusetts. [Section 4.6.3 is pp. 461–485.]

[36] M. Kutz, Lower Bounds for Lucas Chains, SIAM J. Comput 31 (2002), 1896–
1908.

[37] J. C. Lagarias, On ternary expansions of powers of 2, J. London Math. Soc., 79
(2009), 562–588. MR 2508867.

[38] K. Mahler & J. Popken, On a maximum problem in arithmetic (Dutch), Nieuw
Arch. Wiskunde, (3) 1 (1953), 1–15; MR 14, 852e.

[39] D. A. Rawsthorne, How many 1’s are needed?, Fibonacci Quart., 27 (1989),
14–17; MR 90b:11008.

[40] C. P. Schnorr, A lower bound on the number of additions in monotone compu-
tations, Theor. Comput. Sci. 2, (1976), 305–315.

[41] A. Scholz, Aufgabe 253, Jahresbericht der Deutschen Mathematikervereinigung,
Vol. 47, Teil II, B. G. Teubner, Leipzig and Berlin, 1937, pp. 41–42.

[42] A. Schönhage, A Lower Bound for the Length of Addition Chains, Theoretical
Computer Science, 1 (1975), 1–12.

[43] Z. Semadeni, Banach Spaces of Continuous functions, Vol. I, Monografie Matem-
atyczne, Tom 55. PWN—Polish Scientific Publishers, Warsaw, 1971.

[44] V. V. Srinivas & B. R. Shankar, Integer Complexity: Breaking the Θ(n2) barrier,
World Academy of Science, 41 (2008), 690–691.

[45] C. L. Stewart, On the Representation of an Integer in Two Different Bases, J.
Reine Angew. Math., 319 (1980), 63–72.

[46] M. V. Subbarao, Addition Chains – Some Results and Problems, Number Theory
and Applications, Editor R. A. Mollin, NATO Advanced Science Series: Series
C, V. 265, Kluwer Academic Publisher Group, 1989, pp. 555–574.

[47] K. B. Stolarsky, A Lower Bound for the Scholz-Brauer Problem, Canadian Jour-
nal of Mathematics, 21 (1969), 675–683.

[48] E. G. Thurber, Efficient Generation of Minimal Length Addition Chains, SIAM
J. Comput., 28 (1999), 1247–1263.

[49] E. G. Thurber, On Addition Chains l(mn) ≤ l(n)−b and Lower Bounds for c(r),
Duke Math. J., 40 (1973), 907–913.

198

[50] E. G. Thurber, The Scholz-Brauer Problem on Addition Chains, Pacific Journal
of Mathematics, 49 (1973), 229–242.

[51] L. G. Valiant, Negation can be exponentially powerful, Theor. Comput. Sci. 12,
(1980), 303–314.

[52] J. Zelinsky, An Upper Bound on Integer Complexity, in preparation

199

	Dedication
	Acknowledgments
	Preface
	Contents
	List of Tables
	List of Figures
	List of Appendices
	Abstract
	Introduction
	Notions of complexity for natural numbers
	Main results: Integer complexity
	Main results: Addition chains
	Other notions of complexity
	Plan of this thesis

	Numbers with Integer Complexity Close to the Lower Bound
	Introduction
	Properties of the defect
	Good factorizations and solid numbers
	The Classification Method
	Determination of all elements of defect below a given bound r
	Applications

	Integer Complexity and Well-Ordering
	Introduction
	Properties of the defect
	Stable defects and stable complexity
	Low-defect polynomials
	Facts from order theory and topology
	Well-ordering of defects
	Variants of the main theorem

	Addition Chains and Well-Ordering
	Introduction
	Comparison of addition chain complexity and integer complexity
	The A-defect and A-stabilization
	Bit-counting in numbers of small defect
	Cutting and pasting well-ordered sets
	Well-ordering of defects
	Bounds on order type for small A-defect values
	Concluding Remarks

	Integer Complexity: Computational Methods and Results
	Introduction
	The defect, stability, and low-defect polynomials
	Further notes on stabilization and stable complexity
	Low-defect expressions, the nesting ordering, and structure of low-defect polynomials
	The truncation operation
	Algorithms: Computing good coverings
	Algorithms: Computing stabilization length K(n) and stable complexity "026B30D n"026B30D st
	Results of computation

	Open problems and future research
	Additional structure in the defect set
	Generalization to addition-multiplication chains
	Complexity based on a number other than 1
	Further stabilization hypotheses
	Instability
	Counting problems
	Computability and complexity-theoretic problems
	Remaining computational problems

	Conjectures of J. Arias de Reyna
	Good coverings of closed intervals
	Implementation notes
	Leaders with defect at most 1
	References

