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Abstract. WARNING: OLD DRAFT. Let ||n|| be the smallest number of

1’s needed to make n using addition and multiplication, called the complexity
of n. Let L(n) be minm≥n ||m||. Here we classify numbers n satisfying ||n|| =

L(n), using a proof different from the one in our forthcoming paper on integer

complexity more generally. (Much of the introduction, etc., is copied from
that.)

1. WARNING

I didn’t think this was necessary, but some people have been linking directly to
this, so let me warn you right here.

This is an old draft! It is not very well written, and it uses notation and termi-
nology that we’ve moved away from. Parts may be out of date. You should prob-
ably check out the paper “Numbers with Integer Complexity Close to the Lower
Bound”, by myself and Joshua Zelinsky, in INTEGERS, instead. It is considerably
more well-written.

This version does contain some stuff not in that version. We’re currently working
on writing that (and much more) up.

Note that this draft uses a different method than our published paper. However,
it’s a worse method, so I don’t intend to publish it. Perhaps someday I will go
back and rewrite to make this worse method understandable. But don’t count on
it being anytime soon, because I have actual results to write up in the meantime,
and this method really is just inferior to the method in our published paper (and
our planned followups).

2. Introduction

We define the complexity of a natural number n to be the smallest number of
1’s needed to write it using any combination of addition and multiplication, as
introduced in [MP]. Following [A], we denote it ||n||.

Let us define E(k) to be the highest number writable with k ones, using addition
and multiplication, and more generally Er(k) to be the r-th highest number writable
with k ones in this way (zero-indexed). Selfridge showed, as mentioned in [R], E
is given by E(3k) = 3k, E(3k + 2) = 2 · 3k, E(3k + 4) = 4 · 3k. (And of course
E(1) = 1.) Since this is strictly increasing, E(k) does in fact require k ones. If we
define L(n) to be minm≥n ||m||, or equivalently minE(m)≥nm, then this allows for
easy computation of L(n). Note in particular that L(3n) = L(n) + 3 for all n 6= 1.
Also observe that for any n, 3 log3 n ≤ L(n) < 3 log3 n+ 5− 6 log3 2.

Hence it follows that for m ≤ 2, ||2m3k|| = 2a + 3k as long as a and k are not
both zero. In fact, though, Selfridge’s result is strong enough to show that this is
true for m ≤ 10, though we have not seen this acknowledged elsewhere.
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Proposition 2.1. ||2m3k|| = 2m+ 3k for m ≤ 10, m and k not both zero.

Proof. It suffices to show it for m = 10. Note that E(19+3k) = 4 ·35+k = 972 ·3k <
1024 · 3k; hence 2103k cannot be made with less than 20 + 3k ones. �

Furthermore, Rawsthorne shows in [R] that for k ≥ 6, E1(k) = (8/9)E(k). From
this, we can conclude

Proposition 2.2. ||2m3k|| = 2m+ 3k for m ≤ 13, m and k not both zero.

Proof. It suffices to show it for m = 13. Note that E1(25 + 3k) = 32 · 35+k =
7776 · 3k < 8192 · 3k. Hence 2133k cannot be written with less than 26 + 3k ones,
unless it is equal to E(25 + 3k) = 4 · 37+k, which it is not. �

This raises the question: Can formulae for further Er(k) be found? And can
they prove the above for even higher m? In this paper we find such formulae for
Er(k), for every r, that hold so long as k is sufficiently large (depending on r). As
it turns out, all of these formulae can be summed up in the following statement:

Theorem 2.3. A number n satisfies ||n|| = L(n) if and only if it can be written in
one of the following forms:

• 2a3k for some a ≤ 10 (of complexity 2a+ 3k unless a = k = 0)
• 2a(2b3m + 1)3k for a+ b ≤ 2 (of complexity 2(a+ b) + 3(m+ k) + 1 unless
a = m = 0)

From this we can conclude

Proposition 2.4. ||2m3k|| = 2m+ 3k for m ≤ 18, m and k not both zero.

Proof. It suffices to show it for m = 18. n = 2183k is not of one of the forms listed
above, so we must have ||n|| ≥ L(n) + 1. L(2183k) = 3k + L(218) = 3k + 35, hence
||2183k|| ≥ 3k + 36. �

Unfortunately it is not possible to go further than this based purely on knowledge
of Er; methods for doing so are addressed in our forthcoming paper [AZ], in which
we prove the above statement for m ≤ 30.

Here, though, we will provide our original, less generalizable proof of the above
theorem. We do this by first proving the formulae for Er(k) that hold so long as k is
sufficiently large relative to r. The proof will be algorithmic; see the accompanying
Haskell code for the implementation of this algorithm that was used to obtain
the final results. Once we have these, we will demonstrate the equivalence with
Theorem 2.3.

3. Idea: A Computation of E(k)

Of course, to determine Er(k), it suffices to enumerate all possible +, ·, 1 expres-
sions with k ones, evaluate each, and find the r-th-highest result. But this is both
slow and hard to abstract. So, we will present a proof of how to determine E(k),
and then use this to find a better way to determine Er(k). This is far from the
simplest proof of this – see e.g. [R] or [SS] for an inductive proof, due to Selfridge
– but it is the one that is the basis of the algorithm.

In this section, capital letters will be used to denote +, ·, 1 expressions; for such
an expression A, val A will denote its value.

Theorem 3.1. For k ≥ 0, E(3k) = 3k, E(3k + 2) = 2 · 3k, E(3k + 4) = 4 · 3k.
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Proof. Suppose we have any +, ·, 1 expression with k 1s, and suppose k > 1. We
beginning by changing the operations to use the best operation at each step. So,
if neither of the two operands are 1, we change a + to a ·, and vice versa if either
operand is 1. We will call this an α transformation.

α : A+B 7→ AB if val A, val B 6= 1

α : AB 7→ A+B if val A = 1 or val B = 1

Apply α transformations until this becomes impossible. This process can be seen
to terminate, as the only way an operation can be changed more than once is if it
changes from having a 1 as operand to not, as each α transformation cannot decrease
any subexpression, and this can happen at most once by the same reasoning. Thus
no operation may be changed more than twice, and the process terminates.

Once this is done, we apply β transformations:

β : 1 +A1A2 . . . Ar 7→ A1 . . . As−1(1 +As)As+1 . . . Ar for r ≥ 2

In the above, we also require that the Ai are not themselves products. Note that
a β transformation also cannot decrease the value; in fact, it necessarily increases
the value, as none of the Ai can have value 1. Initially none of them can have
value 1 as otherwise an α transformation could be applied, and β transformations
preserve the property that 1s are never multiplied by anything. Note also they
preserve the property that nothing but 1s are ever added to anything.

This, too, terminates: Each β transformation reduces the number of 1s which
are added to products. Once it terminates, we must either have an expression of
the form 1 + 1 + . . .+ 1, or an expression of the form A1 . . . Ar where each Ai is of
the form 1 + . . . + 1; we will represent the sum of n 1s by [n]. In the former case,
we will consider it as the product of one such. So we now apply γ transformations:

γ : [m+ n] 7→ [m][n] for m,n ≥ 2

Each of these increases the value, unless m = n = 2, in which case it remains
the same. Again, this terminates, as each [m] can only be split up finitely many
times. As only [2]s, [3]s, and 1s cannot be split up, this then leaves us with
something of the form [2]a[3]m. There can be no 1s as 1s were never multiplied
after β transformations were applied, and γ preserves this property; so there can
be a 1 only if we started this phase with our entire expression being 1, requiring
k = 1. So finally we apply δ transformations:

δ : [2]3 7→ [3]2

As the number of [2]s decreases each time, this terminates, leaving us with [3]k/3

if k ≡ 0 (mod 3), [2][3](k−2)/3 if k ≡ 2 (mod 3), and [2]2[3](k−4)/3 if k ≡ 1 (mod 3).
Since this can be made with k 1s, but is also a constant upper bound on any number
made with k 1s, it is equal to E(k). �

4. Algorithm for Determining Er(k)

To determine Er(k), we use the transformations described above. We can con-
sider a graph of all possible +, ·, 1-expressions with k ones, with edges labeled with
one of the four types of transformations above, pointing from each expression to its
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image under such. We then start from the node representing E(k) — specifically,
the form of it given above, if k ≡ 1 (mod 3). Consider the of tree of backwards
paths from E(k) in this tree, with the restriction that the inverse transformations
that make up each path must be of decreasing type (i.e. no δ after γ, etc.) Call
this the E(k) tree. Because doing transformations of increasing type eventually
reaches E(k), this tree contains every possible expression at least once. We will
maintain a portion of this tree; initially, it will contain only the E(k) vertex. We
will also maintain a set of “marked” vertices; it will initially consist of this single
vertex. The set of marked vertices after i markings have occurred represents a set
of i highest-valued vertices.

We will then repeat the following three steps:

(1) Expand the tree at the marked vertices (to be described shortly).
(2) Picked an unmarked vertex of highest value, and mark it.
(3) Check if there are r distinct values among the marked vertices; if there are,

return the lowest. If not, repeat these three steps.

Since all vertices will eventually be enumerated this way (as will be described
shortly), this will return Er(k) unless there are not r distinct values that can be
made with k ones, in which case eventually there will be no unmarked vertices, and
the second step will fail.

Now we must describe the process of expansion. By “expanding” the tree at a
vertex, I mean to in some way compute that vertex’s children in the E(k) tree and
to add them to the tree. The simplest way would be to compute all of that vertex’s
children, unless this has already been done for that vertex. Because each child of a
vertex has value at most that of its parent vertex, we need not consider a vertex for
marking as one of the highest until we have considered its parent, so this algorithm
will find the r highest values and return Er(k).

However, we need a way to expand on vertices that we can abstract later, so
we must modify this process slightly. Rather than generating all the β−1 and α−1

children at once, we will generate them in stages. For this, we need to examine
β−1 and α−1 in more detail. (Generating all δ−1 and γ−1 children is not something
there is much to say about.)
β pulls down a 1, so to do a β−1 we must pull up a 1; however, a β can also

combine two products into one, so in order to consder everything that can β to a
given expression, we must not just pull up 1s from products, but rather split up
products in all possible ways and pull up 1s from these. Allowing for permutation
of the factors, this may be described by

β−1 : (1 +A1)A2 . . . As−1As 7→ (1 +A1A2 . . . Aj)Aj+1 . . . As

Note that also we may assume A1 is not 1 and is not a product; in the first case,
β would not be applied to the result, and in the second case, a β would not result
in the same thing we started with. Define a “stage j β−1” to be a β−1 where the
number of factors in the resulting product-plus-one is j. Note that the value of
the expression above is A1 . . . As +Aj+1 . . . As, so if the factor which is having a 1
pulled up is kept constant, any β−1 with the set of factors being grouped with it
is a subset of the multiset {A2, . . . , Aj} has larger value. In particular, each stage
j + 1 β−1 is less than some stage j β−1. Note also a stage-1 β−1 has no effect at
all, and so we can also exclude those, as the result would again not truly β to what
we started with (none of these transformations can leave an expression the same).
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α−1 comes in two types, again allowing for permutations of factors:

α−1 : 1 +A 7→ A

α−1 : A1 . . . As 7→ A1 . . . Aj +Aj+1 . . . As

Strictly speaking, the first type does not preserve the number of 1s used, but
it is easier than keeping track of multiplication by 1. Note that we do not need
to allow the more general I + A 7→ A where valI = 1, as the only way such an I
can occur is as a product of 1s, meaning that using the simplification above, it will
appear as just a 1. Also strictly speaking, the second sort should deal with products
of two things, not arbitrarily many, but this will be necessary for the abstraction
later. Call the first sort a “type 0 α−1” and the second sort a “stage j α−1”, where
we make the assumption that A1 . . . Aj ≤ Aj+1 . . . As. (I.e., by symmetry, we can
assume the smaller side is on the left, and it is the smaller side we count by; if
the two are equal in value, either can go on the left, and we will consider these as
distinct possibilities.)

Noting that for x, y > 0, xy = c, x+y gets larger as x and y get farther apart, i.e.
as the smaller one gets smaller, we see that each α−1 with smaller side a subset of
the multiset {A1, . . . , Aj} has larger value; hence, we conclude as above that each
stage j + 1 α−1 is smaller than some stage j α−1.

Finally, we note that for a given product, any non-type-0 α−1 operating on
that product yields a value less than any β−1 operating on that product, and any
type-0 α−1 operating on any of the 1s below it but above another product yields
a value less than some β−1 operating on that product. The latter is obvious,
as a if the α−1 erases a given 1, some β−1 erases that same 1 but also moves
it up. As for the former, assume A1 is the factor with the 1 being pulled up,
ignore which side is smaller in the α−1 — the left side will simply be whichever
side has the factor with the 1 being pulled up — compare A1 . . . Aj + Aj+1 . . . As

with A1 . . . As − A2 . . . As, the latter of which is less than the value of any β−1

on that product. It suffices to prove the inequality ab + c < (a − 1)bc; here,
a = valA1, b = valA2 . . . Aj , c = valAj+1 . . . As. Writing this as c + ab + bc < abc,

we see from AM-GM that c+ab+bc ≤ 3
3
√
ab2c2, and 3

3
√
ab2c2 < abc if a2bc > 27. In

this case, since none of the factors have value 1, we can say b, c ≥ 2, and furthermore
we can say a ≥ 3, since if it had value 2, we would not be pulling up a 1 from it —
see above. Hence a2bc ≥ 36 and the inequality holds.

Using this, we modify the algorithm as follows: Instead of just keeping track at
each node of whether or not it is marked and whether or not its children have been
generated, we keep track of whether it is marked; a boolean for whether its δ−1

and γ−1 children, and certain type 0 α−1 children, have been generated; a boolean
for whether all type 0 α−1 children have been generated; an integer for what stage
β−1 it should do next, which is initially 2, as we do not do stage 1 β−1s as noted
earlier; and an integer for what stage (non-type-0) α−1 it should do next, which
begins at 1.

Then, to expand on a node, we do the following: First, if its δ−1 and γ−1 children
have not been generated, do so, and mark that this has been done. (As always, do
not generate children inappropriate to the type of inverse transformation used to
reach the node, as these are not actually in the E(k) tree in the first place.) Next,
look at its children generated so far via β−1; suppose it is at stage j. If there are
no stage j − 1 children because j = 2, or if at least one stage j − 1 child is marked,
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generate the stage j children and increment the β−1 stage. Otherwise, there is
no need to consider these children yet. Then, if the node is not itself a product,
generate all type 0 α−1 children where the modification is made above the first
product; we do not need to mark this separately, the variable marking whether δ−1

and γ−1 children have been generated, together with the fact that the node is not
a product, will suffice to record this. Then, check whether the current β−1 stage
is more than the minimum length of a product (whose factors are not themselves
prodcuts) used in the expression. If so, it is time to start applying α−1; generate
all type 0 α−1 children if this has not already been done, and mark that this has
been done. Finally, assuming the above condition for applyiing α−1 is met, look at
the non-type-0 α−1 children generated so far; suppose it is at stage i. If there are
no stage i− 1 children because i = 1, or if at least one stage i− 1 child is marked,
generate the the stage i children and increment the stage.

This completes the description of the algorithm. Since every possible expression
is reached by some path, and any path is checked once all greater paths are marked
(as this would require the marking of both its parent, and any other children of that
parent that might precede it in order of generation), it follows that the algorithm
is correct.

5. Abstracting the Algorithm

Now we abstract the algorithm given above, to produce a new algorithm that
will prove results about Er(k) for more general k. This algorithm will prove:

Proposition 5.1. For all r ∈ N and each congruence class a modulo 3, there exist
ha,r and Ka,r such that for all k ≥ Ka,r with k ≡ a (mod 3), Er(k) = ha,rE(k).

The algorithm itself will, given r and a, determine h ≥ Ka,r, la,r, andKa,r. Then,
in the next section, we will further modify the algorithm and use that to determine
the general form for Ka,r and hk,r, and in the section after that, we will use those
results to prove the main proposition.

Initially, however, our algorithm will only prove

Lemma 5.2. For all r ∈ N and each congruence class a modulo 3, there exist
ha,r ∈ Q, la,r ∈ Z nonnegative and Ka,r ∈ N such that for all k ≥ Ka,r with k ≡ a
(mod 3), Er(k) = ha,rE(k) + la,r.

That la,r is always 0 will come later.
In order to abstract the algorithm, we make the following observation: For dif-

ferent k 6= 1 that are congruent modulo 3, our starting expression looks much the
same, differing only in the number of [3]s available. Let us consider, then, expres-
sions of the same sort as before, only now in addition to +, ·, and 1, we introduce a
new sort of object: an abstract clump of 3s. (Note: From hereon, I will simply use n
to denote a sum of n 1s, rather than [n] as previously.) I will denote a full clump of
3s by 3Z . When doing the operations above, we can consider a clump as a “source”
of 3s, that can have arbitrarily many 3s pulled out of it; thus, for instance, a γ−1

on 3Z might result in 6 ·3Z−2, where here 3Z−2 represents a clump with 2 3s pulled
out of it; its value is one-ninth that of a full clump 3Z . However, this procedure
would quickly become unworkable if we performed such operations as, say, taking
an α−1 of 3Z and getting 3Z/2 + 3Z/2, whatever that would mean. Fortunately, our
operations — the same ones as above — only ever extract an amount of 3s from a
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clump not dependent on the (unknown and arbitrary) number of 3s in it; thus, we
can always write our clumps in the form 3Z−n, for some n.

Let us formalize this. Define an abstract k-+, ·, 1-expression to be an expression
using the binary operators + and ·, the constant 1, and constants 3Z−n for all
integers n (negatives will come up, though only −1s), which are collectively referred
to as “clumps of 3s”. Furthermore, we require that such an expression have no more
than one clump of 3s. k is not relevant to what can be a k-abstract +, ·, 1-expression;
it is relevant only to their value. The value of such an expression will be an element
of Q[x]; it is computed in the same manner as that of a +, ·, 1-expression, except
that 3Z−n has value 3−nx if k ≡ 0 (mod 3), 3−nx/2 if k ≡ 2 (mod 3), and value
3−nx/4 if k ≡ 1 (mod 3). Here, x represents E(k), as 3Z is equal to, one half of, or
one quarter of E(k) as k is 0, 2, or 1 modulo 3 respectively. Note the requirement
that a given expression contain at most one clump means that the value of a given
expression is, in fact, an affine function; furthermore, the constant term must be a
nonnegative integer, as any nonintegers must come from the clump, but the clump
cannot affect the constant term.

In addition to its value, an abstract k-+, ·, 1-expression also has an associated
number of threes. This is the minimum concrete value for Z needed for the expres-
sion to make sense, i.e., if the clump is 3Z−n with n nonnegative, the number of
threes is n, and the number of threes is 0 if n is negative. However, if the clump
of 3s is being added to something rather than multiplied, or if it stands alone as a
full expression, we need an additional 3 (unless n is negative) in order for things
to have their ordinary value, as we’ll need at least 1 three in the clump, as if there
were none, we’d evaluate it as 1 when it should be 0, as it’s being added. Note that
having 3Z+n with n positive would require there to be an additional 3n ones beyond
those in the initial 3Z clump, so this case can only occur when k ≡ 1 (mod 3), and
in that case 3Z+1 is the only way this can occur.

Now, since the values of these expressions are functions rather than constants,
we need to say what it means for one value to be greater than another. Naturally, in
some cases, one function will always be greater than the other for positive x; more
generally, given any two, we can ask which one is eventually greater (if they’re
not equal), simply by comparing the coefficients. However, it is useful here to
introduce another notion. We will say that one expression is “practically greater”
than another if it is greater in all concrete cases that can actually arise, i.e., if it is
greater for all x = E(k) where k is such that it supplies enough threes to meet the
minimum requirements for each. (k that is 0 mod 3 supplies k/3 threes; k that is
2 mod 3 supplies (k − 2)/3 threes; k 6= 1 that is 1 mod 3 supplies (k − 4)/3 threes,
though we can consider 1 as supplying −1 threes if we want.) Note that this notion
depends on the actual expressions, not just their values. Note being practically
greater in particular implies being eventually greater.

We can now define the unpruned abstract E(k) tree as the tree of paths starting
from 3Z , 2 · 3Z , or 4 · 3Z as appropriate (the tree will only depend on k modulo 3)
via the transformations above with the restrictions above, where 3Z−n is considered
equivalent to 3Z−n−m3m for any m ≥ 0, and where every β−1 or non-type-0 α−1

is stage j for some j, where value for the purposes of α−1 is compared by eventual
value, and where any clump is not considered as one factor, but as infinitely many.
We will define the pruned abstract E(k) tree to be the same, but with never applying
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α−1s at a product containing a clump. (Note this makes irrelevant some of the
requirements about α−1 in the unpruned tree.)

The unpruned tree has two important properties: Firstly, if we pick any k 6= 1
of the appropriate congruence class mod 3, we can extract its number of 3s and
plug this in for Z, simply dropping the nodes where this is less than the minimum
number of 3s required, or less than the minimum for some ancestor, and this will
result in the E(k) tree. Secondly, each node is practically greater than all its
children, each stage j + 1 β−1 is practically less than some stage j β−1, each stage
j + 1 α−1 is practically less than some stage j α−1, and each non-type-0 α−1 at a
product and each type-0 α−1 immediately below it is practically less than each β−1

at that product. In short, the inequalities that make the algorithm above work, still
hold, and if we were to specify Z, the algorithm would go exactly the same except
possibly for some nodes being excluded, and comparisons not necessarily going the
same way.

Note the finiteness requirement made above - each β−1 is stage j for some j,
similarly for α−1; in other words, there is no splitting of 3Z into 3Z/2 + 3Z/2 or
anything similar. Of course, such a thing does not even make sense in this frame-
work, as we only allow for clumps of the form 3Z−n. However, it is important to
note that such possibilities are, in fact, irrelevant. This follows from the fact that a
stage j transformation is always practically more than a stage j+1 transformation,
so we always want to do stage 1, then stage 2, then stage 3, etc., i.e., the stage
when instantiated never depends on the concrete Z, and so we can always assume
a constant finite stage in the abstract case. Furthermore, we need never apply an
α−1 at a product containing a clump, as there, we can apply β−1s of arbitrarily
high stage, and we will never reach the point of applying an α−1, so it suffices to
use the pruned tree.

Suppose, then, that we apply this same algorithm, using eventual greatness for
comparison. When the algorithm terminates, all nodes not in the tree we have built
are each practically less than some node in this tree, and so are all possibilities with
clumps of other forms, which are not even in our abstract E(k) tree at all. Hence
our final result, the rth-greatest node in the tree by eventual greatness, is, in fact,
eventually the rth-greatest possible number constructible with k ones (for k in the
appropriate congruence class), and we have our hk,r and lk,r.

In fact, each lk,r will be zero. This is because applying the transformations above
will not change the fact that, firstly, the expression as a whole is a product, and
secondly, that the unique clump is in this top-level product. This is because the
clump starts out in the top-level product, and the only way to make it otherwise
would be either through a β−1 that pulled the whole thing out of the top-level
product — impossible as we only do finite β−1s — or through an α−1 at that
product. Even if we do an α−1 at the product containing the clump due to the
crudeness of our algorithm, it cannot be relevant and will never be marked, as we
can do β−1s of arbitrarily large stage at such a product.

To find a concrete Kk,r, we want two conditions. Firstly, K should be large
enough to supply enough 3s for at least one node of value hk,rx + lk,r, and for at
least one node of each of the r−1 values eventually greater than it. (The value must
itself be constructible; and all those above it must be, or else it would be higher
than rth-highest. Note, we will define Tk,r to be the minimum number of threes
to make that value, and T ′k,r to be the smallest K of the appropriate congruence
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class supplying that many threes. If we really want to find the minimum, we can go
out to r+ 1; this will ensure that we have found all the nodes of rth-highest value,
and we can check all of them for number of threes required. In the next section,
though, we will see that it turns out that the number of threes required never varies
among different expressions for the same value for those values that can actually
be marked at some point.) Note that none of the marked nodes will have a clump
added to anything, so the only case where we will have to add 1 to the number of
3s taken out of the clump is when the expression is of the form 3Z−n.

Secondly, we want K to be large enough that this value is, in fact, less than the
r − 1 that are eventually greater than it; and also large enough that it is greater
than the remaining nodes in the tree we have generated which are eventually less
than it. We do not need to worry about nodes not in the tree we have generated, as
such a node A can be compared to its parent B, which it is practically at most. If
A was made by any method other than a type 0 α−1, it requires at least as many 3s
as B; so if there are enough 3s for B, A is irrelevant, and if there are not enough 3s
for B, A is irrelevant. If A was made by a type 0 α−1, it may require fewer threes
than its parent, but it is always less than B, not just practically at most B, so it is
still irrelevant. However, since any node A appearing in the tree which has nonzero
constant term will never be marked, and the same comparison to its parent applies,
these too are irrelevant. This means we only need to compare against nodes with
zero constant term - which means that this restriction in fact imposes no restriction
at all.

Therefore, we can take for Ka,r the minimum K of the appropriate congruence
class needed to make the r eventually-highest values. And because all of these
values have constant term 0 and the ordering between them is always strict for
x > 0, only that particular function can make that number (anything with nonzero
constant term will be strictly less at this point, remember) at that point and so
this is always the smallest K of that congruence class we can pick.

This proves that the algorithm is correct, and proves Proposition 5.1.

6. Results of the Algorithm

There are, in fact, infinitely many nodes of the each of the abstract Ek trees with
value always greater than (2/3)x. This can be seen by considering the following
families of nodes: For k ≡ 0 (mod 3), 3Z−n−1(1 + 2 · 3n); for other k, multiply
by 2 or by 22 as appopriate. This yields a value of (2 · 3n+1 + 1)x/3n+1 > 2x/3.
Therefore, for all r and k, hr,k > 2/3.

Furthermore, for k ≡ 1 (mod 3), we can find infinitely many nodes with value
greater than (3/4)x; consider the infinite family 3Z−n(1 + 3n+1), of value (3n+1 +
1)x/4 · 3n.

So the question becomes: How low does hr,k go? As it turns out, lr,k is always
zero, and hr,k tends to a limit of 2/3 if k ≡ 0, 2 (mod 3) and 3/4 if k ≡ 1 (mod 3).
We show this by slightly modifying (again) the algorithm described above. Define
λk to be 2/3 if k ≡ 0, 2 (mod 3) and 3/4 if k ≡ 1 (mod 3).

First, here is a list of a few infinite families of nodes that always have value
greater than λkx:

(a) k ≡ 0 (mod 3):
(1) For n ≥ 1, 3Z−n−12(1+3n) of value (2 ·3n+2)x/3n+1 requiring n+1 threes
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(2) For n ≥ 0, 3Z−n−1(1 + 2 · 3n) of value (2 · 3n + 1)x/3n+1 requiring n + 1
threes (including when n = 0)

(b) k ≡ 2 (mod 3):
(1) For n ≥ 1, 3Z−n−122(1 + 3n) of value (2 · 3n + 2)x/3n+1 requiring n + 1

threes
(2) For n ≥ 1, 3Z−n−14(1+3n) of value (2 ·3n+2)x/3n+1 requiring n+1 threes
(3) For n ≥ 0, 3Z−n−12(1 + 2 · 3n) of value (2 · 3n + 1)x/3n+1 requiring n + 1

threes (unless n = 0, then only 0 are required)
(4) For n ≥ 0, 3Z−n−1(1 + 223n) of value (4 · 3n + 1)x/(2 · 3n+1) requiring n+ 1

threes
(5) For n ≥ 0, 3Z−n−1(1 + 4 · 3n) of value (4 · 3n + 1)x/(2 · 3(n + 1)) requring

n+ 1 threes
(c) k ≡ 1 (mod 3):

(1) For n ≥ 0, 3Z−n(1 + 3n+1) of value (3n+1 + 1)x/(4 · 3n) requiring n threes

I claim that, in fact, for each k, there are only finitely many nodes of the abstract
Ek tree not falling into one of the above families. We prove this algorithmically. We
can modify our earlier algorithm as follows. Firstly, when computing children of a
node, we exclude any falling into the infinite families above, except for those that
simplify further. (Note that if certain strange infinite families were to be excluded,
we might have to further modify the algorithm to ensure that there is nothing lying
outside these families or their descendants that it fails to hit because it lies it is
at a higher stage than something in the appropriate family, and β−1m at some stage
returns nothing, preventing us from continuing; however, this problem does not
actually come up, as can be seen by looking at how the infinite families above can
actually be generated, as we will do shortly.) Secondly, instead of marking the node
of highest value, we mark all nodes of value greater than λkx. Thirdly, instead of
stopping when a given number of values have been generated, we stop when we find
no leaves to mark, i.e., when the last expansion generated nothing of value greater
than λkx.

As for just how each infinite family can be generated, the first element of each
infinite family (except 3Z−n−1(1 + 223n)) simplifies further, but the rest can only
be generated by a β−1. Applying β to these expressions in all possible ways, we
see that the ways of generating these are as follows:

(1) For k ≡ 0 (mod 3):
(a) 3Z−n−12(1 + 3n) comes from 3Z−24 · 2
(b) 3Z−n−1(1 + 2 · 3n) comes from 3Z−24 · 2 or 3Z

(2) For k ≡ 2 (mod 3):
(a) 3Z−n−122(1 + 3n) comes from 3Z−24 · 22
(b) 3Z−n−14(1 + 3n) comes from 3Z−242

(c) 3Z−n−12(1 + 2 · 3n) comes from 3Z−24 · 22 or 3Z2
(d) 3Z−n−1(1 + 223n) comes from 3Z−24 · 22 or 3Z2
(e) 3Z−n−1(1 + 4 · 3n) comes from 3Z−242 or 3Z−15

(3) For k ≡ 1 (mod 3):
(a) 3Z−n(1 + 3n+1) comes from 3Z4

And so when expanding on any of these latter expressions, we do not generate
anything of the former form. (Note that those that “simplify further” are pre-
cisely those that would only be generated by a stage-1 β−1, so we do not have to
specifically exclude those cases, as the algorithm already excludes them for us.)
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It is not clear a priori that this algorithm will terminate; however, if it does,
then that means the expressions it has output of value greater than λkx are all
such expressions aside from those in the excluded families, and their descendants.
As it happens, the algorithm, when run, does terminate, for each of the three
possible values of k – see the accompanying implementation of this algorithm in
Haskell. Furthermore, we can check by hand that all children of the given infinite
families, other than those of members which simplify further, are too low in value.
Therefore, the only nodes of value greater than λkx are the infinite families listed
above, and the finitely many exceptions returned by the algorithm. Furthermore,
as the infinite families above all have λkx as the infimum of their values, and there
are only finitely many others, it follows that as r goes to infinity, hr,k approaches
λk.

The actual results of the algorithm are as follows:

(a) k ≡ 0 (mod 3):
(1) 3Z of value 1x requiring 1 three
(2) 3Z−223 of value (8/9)x requiring 2 threes
(3) 3Z−24 · 2 of value (8/9)x requiring 2 threes
(4) 3Z−426 of value (64/81)x requiring 4 threes
(5) 3Z−44 · 24 of value (64/81)x requiring 4 threes
(6) 3Z−44222 of value (64/81)x requiring 4 threes
(7) 3Z−443 of value (64/81)x requiring 4 threes
(8) 3Z−322(1 + 22) of value (20/27)x requiring 3 threes
(9) 3Z−34(1 + 22) of value (20/27)x requiring 3 threes

(10) 3Z−35 · 22 of value (20/27)x requiring 3 threes
(11) 3Z−35 · 4 of value (20/27)x requiring 3 threes
(12) 3Z−629 of value (512/729)x requiring 6 threes
(13) 3Z−64 · 27 of value (512/729)x requiring 6 threes
(14) 3Z−64225 of value (512/729)x requiring 6 threes
(15) 3Z−64323 of value (512/729)x requiring 6 threes
(16) 3Z−6442 of value (512/729)x requiring 6 threes
(17) 3Z−423(1 + 3 · 2) of value (56/81)x requiring 4 threes
(18) 3Z−44 · 2(1 + 3 · 2) of value (56/81)x requiring 4 threes

(b) k ≡ 2 (mod 3):
(1) 3Z2 of value 1x requiring 0 threes
(2) 3Z−224 of value (8/9)x requiring 2 threes
(3) 3Z−24 · 22 of value (8/9)x requiring 2 threes
(4) 3Z−242 of value (8/9)x requiring 2 threes
(5) 3Z−15 of value (5/6)x requiring 1 threes
(6) 3Z−427 of value (64/81)x requiring 4 threes
(7) 3Z−44 · 25 of value (64/81)x requiring 4 threes
(8) 3Z−44223 of value (64/81)x requiring 4 threes
(9) 3Z−4432 of value (64/81)x requiring 4 threes

(10) 3Z−323(1 + 22) of value (20/27)x requiring 3 threes
(11) 3Z−34 · 2(1 + 22) of value (20/27)x requiring 3 threes
(12) 3Z−35 · 23 of value (20/27)x requiring 3 threes
(13) 3Z−35 · 4 · 2 of value (20/27)x requiring 3 threes
(14) 3Z−6210 of value (512/729)x requiring 6 threes
(15) 3Z−64 · 28 of value (512/729)x requiring 6 threes
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(16) 3Z−64226 of value (512/729)x requiring 6 threes
(17) 3Z−64324 of value (512/729)x requiring 6 threes
(18) 3Z−64422 of value (512/729)x requiring 6 threes
(19) 3Z−645 of value (512/729)x requiring 6 threes
(20) 3Z−424(1 + 3 · 2) of value (56/81)x requiring 4 threes
(21) 3Z−44 · 22(1 + 3 · 2) of value (56/81)x requiring 4 threes
(22) 3Z−442(1 + 3 · 2) of value (56/81)x requiring 4 threes

(c) k ≡ 1 (mod 3):
(1) 3Z22 of value 1x requiring 0 threes
(2) 3Z4 of value 1x requiring 0 threes
(3) 3Z−225 of value (8/9)x requiring 2 threes
(4) 3Z−24 · 23 of value (8/9)x requiring 2 threes
(5) 3Z−2422 of value (8/9)x requiring 2 threes
(6) 3Z−15 · 2 of value (5/6)x requiring 1 threes
(7) 3Z−12(1 + 2 · 2) of value (5/6)x requiring 1 threes
(8) 3Z−428 of value (64/81)x requiring 4 threes
(9) 3Z−44 · 26 of value (64/81)x requiring 4 threes

(10) 3Z−44224 of value (64/81)x requiring 4 threes
(11) 3Z−44322 of value (64/81)x requiring 4 threes
(12) 3Z−444 of value (64/81)x requiring 4 threes
(13) 3Z−222(1 + 3 · 2) of value (7/9)x requiring 2 threes
(14) 3Z−24(1 + 3 · 2) of value (7/9)x requiring 2 threes

We now have our full list of hk,r, being simply the hk,r that have come up above,
sorted in descending order. Finally, though not relevant to what will follow, we can
determine Kk,r. This requires just the information on numbers of threes needed
listed above, as noted earlier. (Note, also, that if we knew the above table of
exceptions in advance, we could verify it by hand by checking that the children of
each entry were either too small, or already listed (either as an exception or in one
of the infinite families).)

To summarize, then, the list hk,r that occur and Tk,r for each is:

(A) For k ≡ 0 (mod 3):
(a) For n ≥ 1, (2 · 3n + 2)/3n+1 requiring n+ 1 threes
(b) For n ≥ 0, (2 · 3n + 1)/3n+1 requiring n+ 1 threes
(c) 64/81 requiring 4 threes
(d) 512/729 requiring 6 threes

(B) For k ≡ 2 (mod 3):
(a) For n ≥ 1, (2 · 3n + 2)/3n+1 requiring n+ 1 threes
(b) For n ≥ 0, (2 · 3n + 1)/3n+1 requiring n+ 1 threes
(c) For n ≥ 0, (4 · 3n + 1)/(2 · 3n+1) requiring n + 1 threes if n 6= 0 and 0

threes if n = 0
(d) 64/81 requiring 4 threes
(e) 512/729 requiring 6 threes

(C) For k ≡ 1 (mod 3), k 6= 1:
(a) For n ≥ 0, (3n+1 + 1)/(4 · 3n) requiring n threes
(b) 8/9 requiring 2 threes
(c) 64/81 requiring 4 threes

Note that, happily, the number of threes required for a given fraction is, with
the exception of 1 when k ≡ 0 (mod 3), always exactly the same as the number of
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threes appearing in its denominator. This also shows that the Kk,r resulting from
numbers of threes is the smallest such we can pick.

This gives us:

Proposition 6.1. The table of hk,r and their corresponding Kk,r is as follows:

(1) For k ≡ 0 (mod 3):
r hk,r Kk,r

0 1 3
1 8/9 6
2 64/81 12
3 7/9 12
4 20/27 12
5 19/27 12
6 512/729 18
7 56/81 18
8 55/81 18
9 164/243 18

10 163/243 18
n ≥ 6, 2n− 1 2/3 + 2/3n 3n

n ≥ 6, 2n 2/3 + 1/3n 3n
(2) For k ≡ 2 (mod 3):

r hk,r Kk,r

0 1 2
1 8/9 8
2 5/6 8
3 64/81 14
4 7/9 14
5 20/27 14
6 13/18 14
7 19/27 14
8 512/729 20
9 56/81 20

10 37/54 20
11 55/81 20
12 164/243 20
13 109/162 20
14 163/243 20

n ≥ 6, 3n− 3 2/3 + 2/3n 3n+ 2
n ≥ 6, 3n− 2 2/3 + 1/(2 · 3n−1) 3n+ 2
n ≥ 6, 3n− 1 2/3 + 1/3n 3n+ 2

(3) For k ≡ 1 (mod 3) (note here, unlike before, we are allowing k = 1):
r hk,r Kk,r

0 1 1
1 8/9 10
2 5/6 10
3 64/81 16
4 7/9 16
5 41/54 16

n ≥ 4, n+ 2 3/4 + 1/(4 · 3n) 3n+ 4
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7. Equivalence with the Main Theorem

We can now conclude Theorem 2.3. Observe that for any k (save 1 and 2,
which are easily handled) we have λk = E(k − 1)/E(k). (Hence for k ≥ Kk,r,
we have ||Er(k)|| = k, and Er(k) is the also r-th highest number with complexity
exactly k.) Now suppose n is of one of the forms listed in Theorem 2.3; checking
that L(n) = ||n|| is then straightforward. So we just need the converse; suppose
L(n) = ||n|| = k. Then n > E(k − 1) and so R(n) > λ. Hence there exists some
r with R(n) ≥ hk,r > λ. Thus if we let N = n3l be such that k + 3l ≥ Kk,r, we
must have R(N) = R(n) ∈ {h0, . . . , hr−1}. (R(N) = R(n) because ||n|| = L(n),
so otherwise we would have ||N || < L(N), which is impossible.) And given this
fact it then follows from the above tables that n is of one of the forms listed in
Theorem 2.3.

Observe that a consequence of Theorem 2.3 is that if ||3n|| = L(3n), then ||n|| =
L(n).

Suppose now that we already knew Theorem 2.3, and wanted to deduce the
above formulae. Taking the n 6= 1 satisfying the classification and splitting them
up by ||n|| modulo 3, we get that they are:

• For ||n|| ≡ 0 (mod 3):

– (2 · 3m + 1)3l with R(n) = 2·3m+1
3m+1

– 2(3m + 1)3l (m ≥ 1) with R(n) = 2(3m+1)
3m+1

– 64 · 3l with R(n) = 64/81
– 512 · 3l with R(n) = 512/729

• For ||n|| ≡ 2 (mod 3):

– (4 · 3m + 1)3l with R(n) = (4·3m+1)
2·3m+1

– 2(2 · 3m + 1)3l with R(n) = 2(2·3m+1)
2·3m+1

– 4(3m + 1)3l (m ≥ 1) with R(n) = 4(3m+1)
2·3m+1

– 2 · 3l with R(n) = 1
– 128 · 3l with R(n) = 64/81
– 1024 · 3l with R(n) = 512/729

• For ||n|| ≡ 1 (mod 3), n 6= 1:

– (3m + 1)3l (m ≥ 1) with R(n) = (3m+1)
4·3m−1

– 32 · 3l with R(n) = 8/9
– 256 · 3l of R(n) = 64/81

Now suppose we want to determine the r-th largest number with complexity k.
From the above tables, we can determine the r-th largest value of R that occurs for
numbers with complexity congruent to k modulo 3. Call this value h; then hE(k)
is indeed the r-th largest number with complexity k if and only if all r + 1 values
of R that are at least h and occur for numbers with complexity congruent to k
modulo 3, do indeed occur for numbers with complexity k. However we also know
that if L(3n) = ||3n||, then L(n) = ||n||, or in other words, that if L(n) = ||n||
and k ≡ ||n|| (mod 3), then n can be written with k ones if and only if R(n)E(k)
is an integer. So this simply requires taking k to be large enough for all of these
to be integers; hence we can use this to get the get a table of resulting formulae
for the r-th largest number with complexity k – and this table precisely matches
the ones above. Furthermore, when these formulae are valid, we have that they are
also equal to Er(k), the r-th largest number writable with k ones, because each of
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them is greater than E(k− 1); hence any n greater than such a number which was
writable with k ones would also have to have complexity exactly k.

Hence Theorem 2.3 really is just a summary of the above tables.

8. Consequences and Conclusions

Having concluded Theorem 2.3, we can now also conclude Proposition 2.4.
Unfortunately, this method does not seem to generalize beyond finite r, in partic-

ular because it’s not even clear from this perspective what Er(k) could even mean
for r an infinite ordinal. In order to do that we need to instead look at values of
n/E(||n||), as we do in [AZ].

We can also use this to classify the numbers n with ||n|| < 3 log3 n + 1; since
3 log3 n ≤ L(n) < 3 log3 n + 5 − 6 log3 2, if ||n|| < 3 log3 n + 1, we must have
||n|| = L(n). Since we know the complexities of all the numbers n with ||n = L(n),
it is easy to then check that

Proposition 8.1. A number n satisfies ||n|| < 3 log3 n+ 1 if and only if it can be
written in one of the following forms:

• 3k for k ≥ 1
• 2a3k for a ≤ 9
• 5 · 2a3k for a ≤ 3
• 7 · 2a3k for a ≤ 2
• 19 · 3k
• 13 · 3k
• (3n + 1)3k

This can then be used directly as a base case for the main lemma from [AZ].
(As opposed to how it is actually done in [AZ], where Rawsthorne’s formula is first
used as a base case for the main lemma to bootstrap up to the above list.)
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