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Abstract. WARNING: OLD DRAFT. Define f(n) to be the integer com-

plexity of n, the smallest number of ones needed to write n using an arbi-
trary combination of addition and multiplication. John Selfridge showed that

f(n) ≥ 3 log3 n for all n. Define d(n) = f(n) − 3 log3 n; in this paper we
present a method for classifying all n with d(n) < r for a given r. From this,

we derive a number of consequences. We prove that f(2m3k) = 2m + 3k for

m ≤ 31 with m and k not both zero, and present a method that can, with
more computation, prove the same for larger m. We extend a result of Daniel

Rawsthorne by finding formulae for the r’th largest number with complexity

k, so long as k is sufficiently large relative to r. Defining Ar to be the set of
all n with d(n) < r, we prove that Ar(x) = Θ((log x)brc+1). Finally we prove

that the set of all values of d is a well-ordered subset of R, with order type ωω ,

as was conjectured earlier by Juan Arias de Reyna.

1. WARNING

I didn’t think this was necessary, but some people have been linking directly to
this, so let me warn you right here.

This is an old draft! It is not very well written, and it uses notation and termi-
nology that we’ve moved away from. Parts may be out of date. In particular, some
of the things stated here as conjectures have since been proved.

You should probably check out the paper “Numbers with Integer Complexity
Close to the Lower Bound”, by the same authors, in INTEGERS, instead. It is
considerably more well-written.

This version does contain some stuff not in that version. We’re currently working
on writing that (and much more) up.

2. Introduction and motivation

In this paper we consider the notion of integer complexity, as was introduced by
Mahler and Popken in 1953 in [6], and later popularized by Richard Guy in [3];
it appears as problem F26 in his Unsolved Problems in Number Theory [4]. We
say the complexity of a natural number n is the smallest number ones needed to
write it using any combination of addition and multiplication. For instance, 7 has
a complexity of 6, since it can be written using 6 ones as (1 + 1 + 1)(1 + 1) + 1, but
not with any fewer. We will refer to a representation of n that uses the smallest
number of ones as most-efficient, and we will denote the complexity of n by f(n).
Note that we can compute f(n) recursively; f(1) = 1, and for n > 1,

f(n) = min
a,b∈N

a+b=n or ab=n

f(a) + f(b).
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(For those interested in actually computing f , there is an algorithm slightly
faster than the näıve one, due to Srinivas and Shankar and described in [8]; we
used this in our own calculations.)

The complexity of n is approximately logarithmic in n. For n > 1, we have
f(n) ≤ 3 log2 n as can be seen by writing n in binary. John Selfridge showed (as
noted in [7]) that we also have f(n) ≥ 3 log3 n. In more detail, let us denote by E(k)
the largest number writable with k ones. What Selfridge showed is that E(k) is
given by the formulae E(1) = 1; E(3k) = 3k; E(3k+2) = 2·3k; and E(3k+4) = 4·3k.
(Note, by the way, that for k > 1, we have E(k + 3) = 3E(k).) In particular, for
any k we have E(k) ≤ 3k/3, and so for any n we have f(n) ≥ 3 log3 n.

Obviously a slightly better lower bound can be obtained from Selfridge’s result,
namely, f(n) ≥ L(n) where L(n) is given by

L(n) =


1 if n = 1
3k if 3k ≤ n < 4 · 3k−1 and k 6= 0
3k + 2 if 2 · 3k ≤ n < 3k+1

3k + 4 if 4 · 3k ≤ n < 2 · 3k−1

Note that L(n) is equal to the smallest number of ones needed to make a number
that is at least n, as well as the smallest k such that E(k) ≥ n. We also have, for
n > 1, L(3n) = L(n)+3. Also observe that, past the initial 1, the ratios of successive
values of E are 3/2, 4/3, 3/2, 3/2, 4/3, 3/2, . . .; this sequence of ratios will reoccur
later.

Not much more about the growth rate of f is known, though better upper bounds
have recently been proven. Indeed, it is not even known that f(n) � 3 log3(n), a
rather weak assertion. We will suggest a potential approach to this problem in Part
II.

The notion of integer complexity is somewhat similar to the more well-known
notion of addition chain length. An addition chain for n of length k is an increasing
sequence (a0, . . . , ak), starting with a0 = 1, ending with ak = n, and such that, for
i > 0, each ai is the sum of two (possibly equal) previous terms. The length of
the shortest addition chain for n is denoted l(n) [9]. Both are ways of measuring
the complexity of a given number, and both are approximately logarithmic in n.
However they get there a bit differently – in an addition chain, once a number is
constructed once, it can then be used repeatedly at no additional cost. This is
not allowed in integer complexity; f(5) = 5, as every 1 in 1 + 1 + 1 + 1 + 1 must
be paid for. Instead of allowing free reuse, though, we do allow multiplication.
It seems that allowing either multiplication or free reuse is enough to make the
resulting complexity measure approximately logarithmic. Interestingly, if we allow
both of these by considering τ(n), the length of the shortest addition-multiplication
chain for n, while obviously τ(n) = Ω(log log n), it is not known that τ(n) =
O(log log n), nor is it expected to be true. In fact, the growth rate of τ – specifically,
τ(n!) – is related to the P -vs.-NP problem for Blum-Shub-Smale machines over
the complex numbers. If there is no sequence an such that τ(ann!) grows only
polylogarithmically, then P 6= NP for such machines. [2]

Unfortunately, integer complexity seems to be lacking in nice properties. For
instance, it is not monotonic; f(11) = 8, but f(12) = 7 (via the representation
(1 + 1 + 1 + 1)(1 + 1 + 1)). One case where it does behave nicely is powers of 3;
for n > 0 we have f(3n) ≤ 3n, since we can write 3n as the product of n copies of
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1 + 1 + 1; and by Selfridge’s bound above, we do indeed have that f(3n) = 3n, and
there is no shorter way of writing 3n. However, if we attempt to generalize this to,
say, powers of 5, this fails; while f(5) = 5, and f(25) = 10, and f(125) = 15, it
turns out that f(56) = 29 instead of the expected 30, as 56 = 15626 = 1+(1+1)(1+
1)(1+1)(1+1+1)(1+1+1)(1+(1+1)(1+1)(1+1)(1+1+1)(1+1+1)(1+1+1)).

The corresponding question for powers of 2, whether f(2m) = 2m for m > 0,
is open. More generally, is f(2m3k) = 2m + 3k, if m and k are not both zero?
Jānis Iraids has verified this for 2m3k ≤ 1012 [5], so in particular f(2m) = 2m for
1 ≤ m ≤ 39. Note that while handling general powers of 2 is hard, fixed powers of
2 with varying powers of 3 turn out to be considerably more workable. In Section 6
of this paper we will prove:

Theorem 2.1. For m ≤ 31 and any k with m and k not both zero, f(2m3k) =
2m+ 3k.

Moreover, we will present a general method that can prove this for larger m with
more computation.

It is not too hard to prove this for smaller m; from Selfridge’s bound we see that
this holds for m ≤ 2. Indeed, Selfridge’s result is in fact strong enough to show:

Proposition 2.2. For m ≤ 10 and any k with m and k not both zero, f(2m3k) =
2m+ 3k.

Proof. It suffices to show it for m = 10. Note that E(19+3k) = 4 ·35+k = 972 ·3k <
1024 · 3k; hence 2103k cannot be made with less than 20 + 3k ones. �

Define Er(k) to mean the r-th highest number writable with k ones (where we
are zero-indexing, so E0(k) = E(k)). Rawsthorne proved in 1989 in [7] that for
k ≥ 6, we have E1(k) = (8/9)E(k). From this we can conclude:

Proposition 2.3. For m ≤ 13 and any k with m and k not both zero, f(2m3k) =
2m+ 3k.

Proof. It suffices to show it for m = 13. Note that E1(25 + 3k) = 32 · 35+k =
7776 · 3k < 8192 · 3k. Hence 2133k cannot be written with less than 26 + 3k ones,
unless it is equal to E(25 + 3k) = 4 · 37+k, which it is not. �

One might ask if f(3n) = f(n) + 3 for n > 1, but this is false; 107 is the smallest
counterexample, with f(107) = 16 but f(321) = 18. However, in Section 6 we will
show that this is true if n > E(f(n))/3. Furthermore in the next section we will
prove the following, earlier conjectured by Juan Arias de Reyna:

Theorem 2.4. For any m, there exists a K such that for any k ≥ K, we have
f(3km) = 3(k −K) + f(3Km).

Now one approach to proving f(2m3k) = 2m + 3k for larger m might be to
directly extend Rawsthorne’s result – if one had similar formulae for Er(k) (at
least for k sufficiently large relative to r), one could apply this same technique to
push m up further. In fact such formulae exist – in Section 7 we will prove:

Theorem 2.5. Given r ≥ 0, and k0 a congruence class modulo 3, there exists K
and h such that for k ≥ K with k ≡ k0 (mod 3), we have Er(k) = hE(k), where
K and h are given by tables that can be found in Section 7.
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(It is also possible to prove these formulae by other methods than the ones in
this paper, but we do not have the space here to discuss such techniques.) But as
we will later see, regardless of the size of r, these cannot get us past m = 18. We
would like to consider Eω(k), but this is meaningless. A change of viewpoint is
needed.

Juan Arias de Reyna in [1] found the correct way of considering these formulae
to extend them beyond the finite case. Rather than write Er(k) = hE(k), instead
write Er(k)/E(k) = h. Replace Er(k) with an arbitrary n, and E(k) with E(f(n)).
So instead of talking about the highest numbers that can be made with k ones, we
can talk about the highest values of R(n) := n/E(f(n)) that can occur. It is not
obvious that this replacement is justified, i.e. that f(Er(k)) = k when k is large
enough for the appropriate formulae to hold; we will prove this when we derive the
formulae for Er(k). We will then classify the highest values of these that can occur,
and use this to prove f(2m3k) = 2m+ 3k for higher values of m ≤ 31 and there is
no obvious obstacle to using this for any given m.

For this to really “extend the formulae for Er into the transfinite range”, we
would want the set of all values of R(n) to be a reverse well-ordered subset of Q.
This turns out to be true:

Theorem 2.6. The set of all values of R(n) is reverse well-ordered, with order
type ωω.

Arias conjectured this in [1] and we will prove this in Sections 9 and 10.

3. Introduction part 2 – defect and integral defect

While E is easy to compute, it is still not the easiest to work with, so instead
of n/E(f(n)) we will prefer to consider n/3f(n)/3. Nothing is lost if we switch to
this formulation; 3k/3 = cE(k) for a constant c depending only on the residue class
of k modulo 3 (and whether or not k = 1), so if we know what k is modulo 3 it
is then easy to convert back and forth between the two notions. Indeed, n/3f(n)/3

actually carries more information, as due to the irrationality of 31/3 and 32/3 we
can from this number determine the residue of f(n) modulo 3 and thus determine
R(n), whereas the reverse is not possible. (The case n = 1 puts a slight snag in this,
but it easy to see that if n/3f(n)/3 = 3−1/3 then we must have n = 1, as otherwise
we would have f(n) = 4 · 3k but n = 4 · 3k−1, an impossibility. More on this in a
moment.)

We will make one more change of viewpoint – instead of working with n/3f(n)/3,
we will work with f(n)− 3 log3(n), which we will denote d(n) and call the defect of
n. This encodes the same information, as they’re related by n/3f(n)/3 = 3−d(n)/3;
in particular from it we can deduce both R(n) the residue of f(n) modulo 3. The
problem now becomes to classify numbers of small defect – numbers with complexity
close to the lower bound.

We will prove in Section 8 is that there are not very many numbers with com-
plexity close to the lower bound:

Theorem 3.1. Let Ar denote the set of all n with d(n) < r, and let Ar(x) denote
the number of elements of Ar which are less than x. Then for any r ≥ 0, we have
Ar(x) = Θ((log x)brc+1).
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To be concrete about the equivalence between d and R,

d(n) =


−3 log3(R(n)) if f(n) ≡ 0 (mod 3)
−3 log3(R(n)) + d(2) if f(n) ≡ 2 (mod 3)
−3 log3(R(n)) + 2d(2) if f(n) ≡ 1 (mod 3) and n 6= 1
0 if n = 1

In fact d(n) encodes enough information that we have:

Lemma 3.2. If d(n) = d(m) for two numbers n and m, then either n = m3k for
some k or vice versa. Indeed if d(n) − d(m) is any rational number, in particular
any integer, the same conclusion holds.

Proof. If d(n)− d(m) is rational, then log3(n/m) is rational; since n/m is rational,
the only way this can occur is if log3(n/m) is an integer. �

Of course, there is a better lower bound than 3 log3(n), namely L(n), so define
D(n) = f(n)− L(n), the integral defect of n. We will not typically work with this
directly, however, as it is much less convenient and is a lossy notion; for instance,
D(n) = 0 for all n from 1 to 10. To say D(n) = 0 is to say f(n) = L(n), that
is, f(n) is the smallest k such that E(k) ≥ n, or in other words, that E(f(n)) is
the smallest value of E which is at least n. So more generally to say D(n) = l,
or L(n) = f(n) − l, then, is to say that E(f(n)) is the l-th value of E past the
smallest one which is at least n. Thus what D actually tells is how many values
E(k) there are such that n ≤ E(k) ≤ E(f(n)), it being one less than this number.
Since (barring the initial 2/1) the ratios of successive values of E repeat with a
period of 3, it follows that D(n) is actually telling us the broad range in which
R(n) falls, though the changeover points will depend on the residue of f(n) modulo
3. (Hence if we know d(n), since we can determine R(n) and the residue of f(n)
modulo 3, we can determine D(n).)

Equivalently, to say that D(n) ≤ l, is the same as to say that, n is greater than
all numbers m with f(m) < f(n)− l. Thus, D(n) = 0 is the same as to say that n is
greater than all m with f(m) < f(n). Note that D is numerically close to d, since
L(n) is close to 3 log3 n; for any n, by using the formulae for E and L we can see that
3 log3 n ≤ L(n) < 3 log3 n+1+2d(2), and therefore D(n) ≤ d(n) < D(n)+1+2d(2).

Note that if n = ab with f(n) = f(a) + f(b) − k, then d(n) = d(a) + d(b) − k,
and in particular d(3n) = d(n) if and only if f(3n) = 3 + f(n). Similarly note for
n > 1, if f(3n) = f(n) + 3− k, then D(3n) = D(n)− k.

The notion of defect gives us an easy proof of the following conjecture of Arias:

Theorem 3.3. For any m, there exists a K such that for any k ≥ K, we have
f(3km) = 3(k −K) + f(3Km).

Proof. For any n, note that d(3n) ≤ d(n), with equality if and only if f(3n) = f(n)+
3. So the sequence d(m), d(3m), d(9m), . . . is non-increasing, nonnegative, and can
only decrease in integral amounts, hence it must eventually stabilize, which proves
the theorem. (The proof could be done with D instead with little modification.) �

Note that this still leaves open

Question 3.4. In Theorem 3.3, is it possible to get a bound on K based on m?
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4. Main Lemma

Here, we state and prove what will be our primary tool for the rest of the paper.
Given any r > 0, we can, by applying this lemma repeatedly, put restrictions on
what n can satisfy d(n) < r.

For any real r ≥ 0, define Ar to be {n ∈ N : d(n) < r}; define Dr to be
{d(n) : n ∈ N, d(n) < r}; and define Br to consist of those elements of Ar that
cannot be written most efficiently as 3m for any m (so that Ar consists precisely of
elements of Br times powers of 3). Define Ar, Dr, and Br to be like Ar, Dr, and
Br but with nonstrict inequalities.

We will use the main lemma to inductively build up a superset of Ar. Note that
as a consequence of Rawsthorne’s result that E1(k) = (8/9)E(k) for k ≥ 6, we have
that for any n, if R(n) > 8/9 then R(n) = 1. Considering what this yields for
d(n) (depending on n modulo 3), we see that d(2) = 2− 3 log3 2 = 0.107 . . . is the
smallest non-zero defect, i.e. Ad(2) consists only of powers of 3. This is the base
case to which our lemma is the inductive step.

(Though we will later derive the previously mentioned formulae for Er(k) as a
consequence of this base case and main lemma, it is actually possible to prove them
by an entirely different method which does not use Rawsthorne’s result as a base
case. Again, however, we do not have the space to discuss such here.)

Finally define Tα to consist of those natural numbers n < 1

3
1−α
3 −1

+ 1 whose

only shortest representation is as either 1 or as (n − 1) + 1. Note that for α < 1,
we have that Tα is a finite set. Then:

Proposition 4.1. For any α < 1 and k ≥ 2, any element of B(k+1)α can be written
most efficiently in one of the following forms:

(1) A product of an element of Biα and an element of Bjα with i + j = k + 2
and 2 ≤ i, j ≤ k, with defects totalling less than (k + 1)α;

(2) An element a of Akα plus a number b ≤ a such that

d(a) + f(b) < (k + 1)α+ 3 log3 2,

possibly times an element of Bα;
(3) Or an element of Tα, possibly times an element of Bα;

And any element of B2α can be written in one of the following forms:

(1) A product of up to three elements of Bα, with defects totalling less than 2α;
(2) An element a of Aα plus a number b ≤ a such that

d(a) + f(b) < 2α+ 3 log3 2,

possibly times an element of Bα;
(3) Or an element of Tα, possibly times an element of Bα.

Proof. Suppose m ∈ B(k+1)α; take a most efficient representation of m, which is
either ab, a+ b, or 1. If m = 1, we are done.

Suppose m can be most efficiently written as a product, say as
∏r
i=1mi (where

r ≥ 2 and eachmi cannot be written most efficiently as a product); so
∑r
i=1 d(mi) =

d(m) < (k + 1)α. Note that no product of a subset of the mi can be written most
efficiently as 3 times another number, as else we could choose one of the mi to
be 3, contrary to the assumption m ∈ B(k+1)α. If k ≥ 2, then either there exists
an i with d(mi) ≥ kα, or else we can partition the d(mi) into two nonempty
sets each with sum less than kα; in this case, call their products a and b. Then
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d(a) + d(b) < (k + 1)α, so if we let (i − 1)α be the largest multiple of α at most
d(a), then d(b) < jα if we let j = k+ 2− i. If such a partition is not possible, then
letting a be mi with d(mi) ≥ kα, and b the product of the others, then m is the
product of an element of Bα and an element of B(k+1)α which cannot be written
as a product; see next paragraph for how to handle this. In the case k = 1, either
there exists an i with d(mi) ≥ kα, or else we can partition the d(mi) into either
two or three nonempty sets each with sum less than α, so either we have the “see
next paragraph case”, or we have a product of three elements of Bα.

So now we have to determine what elements of B(k+1)α cannot be written in
this way, both to complete the multiplication case and to handle the addition case.
Suppose m = a+ b with f(m) = f(a) + f(b) and b minimal, so a ≥ b. Then

f(a) + f(b) = f(m) < 3 log3(a+ b) + (k + 1)α ≤ 3 log3(2a) + (k + 1)α,

so d(a)+f(b) < (k+1)α+3 log3 2. Furthermore, b cannot be written most efficiently
as a sum c + d or else we could regroup a + (c + d) as (a + c) + d which would
contradict the minimality of b.

If a ∈ Akα, we are done. Otherwise, we have

3 log3 a+ kα+ f(b) < f(a) + f(b) = f(m) <

3 log3(a+ b) + (k + 1)α ≤ 3 log3(2a) + (k + 1)α,

so f(b) < 3 log3 2 + α; since α < 1, we have f(b) ≤ 2 and thus b ≤ 2; by the
assumption that b cannot be written most efficiently as a sum, we have b = 1.
Hence 3 log3 a + kα + 1 < 3 log3(a + 1) + (k + 1)α; if we solve for a, we find that
m = a + 1 ∈ Tα; and we may assume that this is the only most efficient way to
write m as otherwise it would be covered in one of the other cases. �

Note that while we specified that the representation is most efficient, and in-
cluded constraints based on the defects of the numbers in the already-known Ar,
we don’t really need either of these for most purposes, when we are just interested
in computing some superset of A(k+1)α. We don’t even have any easy way of check-
ing whether the resulting reprentations are most-efficient, after all. In particular,
in the addition case, note that the requirement that d(a)+f(b) < (k+1)α+3 log3 2
implies the weaker requirement that just f(b) < (k + 1)α+ 3 log3 2, or just L(b) <
(k + 1)α+ 3 log3 2. We’ll define the set of b satisfying f(b) < x+ 3 log3 2 to be Sx;
note that Sx is always finite.

For Ak and Bk we have a similar theorem – just use Br’s instead of Br’s in the
pure product case and use a nonstrict inequality – and the proof is the same except
for the strictness of the inequalities. Whether we state theorems in terms of Ar or
Ar will depend on convenience, but typically the distinction will not matter since
Ar \Ar can consist of at most a single number times powers of three.

5. Computation and bootstrapping

We will explicitly computing the set A1. We do this for two reasons. Firstly,
we will later compute Ar for larger r, so A1 is on the way. Secondly, later results
in Section 8 and onward will depend on one the structure of A1. This section
accomplishes a sort of bootstrapping – we compute A1 using Ad(2) as our base case,
but once we have A1 it will become our new base case.
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Since we want to compute A1, we will here discuss how we can use the main
lemma to compute Ar for small r. The main lemma allows us to inductively con-
struct a superset of Ar, but if we want to determine Ar itself – and if we don’t want
this computation to blow up very quickly – we’ll need some way of then determining
the actual complexities of the resulting candidates.

Upper bounds are easy. To find lower bounds on complexities, we will typically
use the following technique: Say we want to show that f(n) ≥ k; since f(n) is
always an integer, it suffices to show f(n) > k − 1, which we do by noting that if
f(n) ≤ k − 1 held, it would put n in some Al which we have already determined
and know it’s not in. In particular, we have:

Lemma 5.1. Take α ≤ 1/2. Say d(a) < iα and d(b) < jα, and let k + 2 = i + j.
Then f(ab) = f(a) + f(b) unless d(ab) < kα.

Proof. Note

f(ab) ≥ 3 log3(ab) + kα = 3 log3 a+ 3 log3 b+ (i+ j − 2)α > f(a) + f(b)− 1

so f(ab) ≥ f(a) + f(b), done. �

Lemma 5.2. Take α ≤ d(2). Say d(a) < kα, then f(3m(a+ 1)) = 3m+ f(a) + 1
unless d(3m(a+ 1)) < kα.

Proof. Note

f(3m(a+ 1)) ≥ 3 log3(a+ 1) + 3m+ kα > f(a) + 3m

so f(3m(a+ 1)) ≥ 3m+ f(a) + 1, done. �

With these two lemmas in hand, and the base case knowledge of Aα for α ≤ d(2),
we can pick a step size α ≤ d(2) and inductively compute Akα. If we know Akα, and
the complexities of the numbers therein, first we use the main lemma to generate
candidates for A(k+1)α; then we check which of these are already in Akα. For those
numbers that are already in, we are done. For those that are not, we can use
the above two lemmas to determine their complexities and hence whether they are
actually in. This works so long as kα < 5− 3 log3 2 = 3 + d(2) (or k ≤ 28), as then
Skα = {1}.

So for Ar for r < 3 + d(2), we have a method to determine Ar, which is almost
an algorithm – unfortunately to turn it into an actual algorithm, we would need
some way to represent the data that would allow the required operations, and we
have not figured this out. Hence all our computations have been done by hand.
This method works for r ≥ 3 + d(2) as well, by specially tweaking Lemma 5.2 and
the additive case of the main lemma to handle additive constants other than 1, but
we will not discuss this here.

It isn’t obvious that expressions of the form a+b are ever relevant when a, b 6= 1;
Rawsthorne’s computations in [7] failed to uncover any most-efficient representa-
tions a+b with a, b 6= 1, for instance. However, such numbers do exist, as Arias and
Van de Lune found [4]; they even give a prime p which is most efficiently represented
as 6 + (p− 6) but not 1 + (p− 1), namely 353942783 = 6 + 353942777.

In any case, we can then compute that the numbers with defect less than 1 are
as follows:

• 3k of complexity 3k for k ≥ 1
• 2a3k of complexity 2a+ 3k for a ≤ 9
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• 5 · 2a3k of complexity 5 + 2a+ 3k for a ≤ 3
• 7 · 2a3k of complexity 6 + 2a+ 3k for a ≤ 2
• 19 · 3k of complexity 9 + 3k
• 13 · 3k of complexity 8 + 3k
• (3n + 1)3k of complexity 1 + 3n+ 3k (unless n = 0)

(Note also 1 is the only number of defect exactly 1.) The real significance of this
list, however, that makes everything in Section 8 and onward work, is:

Corollary 5.3. For every α < 1, we have that Bα is a finite set.

Note this fails for B1; the defects of (3n + 1)3k approach 1 as n approaches
infinity.

6. Further results of computation

Using the above method we have in fact classified all numbers with defect less
than 22d(2) = 2.3586 . . .. This is greater than 2 + 2d(2) so this in particular allows
us to determine all numbers with integral defect at most one.

Due to its length, we have attached a table of the results separately.
Since determining Ar allows us to put lower bounds on the complexities of any

numbers not in it. we have the following:

Lemma 6.1. Suppose that none of 2n+93k lie in And(2) for any k. Then for any

m ≤ n+ 9 and any k (with m and k not both zero), f(2m3k) = 2m+ 3k.

Proof. It suffices to show that f(2n+93k) > 2n+ 3k + 17, but by assumption,

f(2n+93k) > (n+ 9)3 log3 2 + 3k + nd(2) = 2n+ 3k + 27 log3 2 > 2n+ 3k + 17,

and we are done. �

From our classification, it is straightforward to check that 2313k does not lie in
A22d(2) for any k, so we can conclude

Corollary 6.2. For m ≤ 31 and any k with m and k not both zero, f(2m3k) =
2m+ 3k.

as we claimed above. We can also classify the set of n with D(n) = 0 as follows:

Corollary 6.3. The n with D(n) = 0 are precisely those numbers that can be
written in one of the following forms:

• 2m3k with m ≤ 10
• 2a(2b3l + 1)3k with a+ b ≤ 2.

We will show in Section 7 that from this statement we can deduce formulae
for the Er(k) (for k sufficiently large relative to r), and vice versa; it will turn
out that the n satisfying D(n) = 0 are almost exactly the numbers that can be
written as Er(k) for such k and r. Meanwhile we leave it to the reader to see how
Corollary 6.3 implies that f(2m3k) = 2m+ 3k for m ≤ 18 with m and k not both
zero. Obviously a similar classification could be made for D(n) ≤ 1, but it is ugly
and unenlightening so we have not listed it here.

Our computations also tell us a little about the question of when f(3n) is equal
to f(n) + 3. We see that aside from 1, the number of smallest defect for which
f(3n) 6= f(n) + 3 is 683. We also see that
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Corollary 6.4. If D(3n) = 0, then D(n) = 0, and if D(3n) = 1, then D(n) = 1.
Hence if D(n) ≤ 2 and n 6= 1, f(3n) = f(n) + 3.

If we rewrite the condition D(n) ≤ 2 as D(n) < 3, and observe that D(n) < 3 if
and only if R(n) > 1/3, then can rewrite this conclusion as

Corollary 6.5. For n > 1, if n > E(f(n))/3, then f(3n) = f(n) + 3.

Knowing A2 makes the “α to 2α” case of the main lemma unnecessary, but we
haven’t computed the full ordering on the set of defects less than 2 so it’s easier to
use the main lemma.

7. Formulae for Er(n)

As mentioned in in the previous section, Corollary 6.3 is equivalent to a series
of formulae for Er(k) that work so long as k is sufficiently large depending on r,
and the Er(k) obtained this way are almost exactly the n satisfying D(n) = 0. In
this section we prove this. (Though we do not include here our original proof of
Corollary 6.3, it is worth noting that our original proof went the other way – it
proved Corollary 6.3 by way of these formulae. Hence why we formulate this as an
equivalence rather than just stating that the formulae are a corollary.)

Fix k modulo 3. The numbers n with D(n) = 0 and f(n) ≡ k (mod 3) are the
numbers of lowest defect (or highest R) with f(n) ≡ k (mod 3). If we look at the
numbers n with integral defect of 0 and split them up by their complexity modulo
3, we get that n is one of:

• For f(n) ≡ 0 (mod 3):

– (2 · 3m + 1)3k with R(n) = 2·3m+1
3m+1

– 2(3m + 1)3k (for m ≥ 1) with R(n) = 2(3m+1)
3m+1

– 64 · 3k with R(n) = 64/81
– 512 · 3k with R(n) = 512/729

• For f(n) ≡ 2 (mod 3):

– (4 · 3m + 1)3k with R(n) = (4·3m+1)
2·3m+1

– 2(2 · 3m + 1)3k with R(n) = 2(2·3m+1)
2·3m+1

– 4(3m + 1)3k (for m ≥ 1) with R(n) = 4(3m+1)
2·3m+1

– 2 · 3k with R(n) = 1
– 128 · 3k with R(n) = 64/81
– 1024 · 3k with R(n) = 512/729

• For f(n) ≡ 1 (mod 3), n 6= 1:

– (3m + 1)3k (for m ≥ 1) with R(n) = (3m+1)
4·3m−1

– 32 · 3k with R(n) = 8/9
– 256 · 3k of R(n) = 64/81

Note that from the above tables, for each congruence class of k modulo 3, the
numbers n with D(n) = 0 are precisely those with the ω largest values of R, or
ω smallest defects, among m with f(m) ≡ k (mod 3) – this is what will give us
the connection between n with D(n) = 0, and the formulae for Er(k), the largest
numbers writable with k ones. (Indeed, we expect that more generally, for each
congruence class of k modulo 3, the numbers n with D(n) ≤ m are precisely those
with the ωm largest values of R; we will motivate this conjecture in Part II.)

Suppose we want to determine the r-th largest number with complexity k. From
these tables, we can determine the r-th largest value of R that occurs for numbers
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with complexity congruent to k modulo 3. Call this value h; then hE(k) is indeed
the r-th largest number with complexity k if and only if all r + 1 values of R that
are at least h and occur for numbers with complexity congruent to k modulo 3,
do indeed occur for numbers with complexity k. We also know that if D(3n) = 0,
then D(n) = 0, or in other words, that if D(n) = 0 and k ≡ f(n) (mod 3), then
n can be written with k ones if and only if R(n)E(k) is an integer. So this take
k to be large enough for all of these to be integers; hence we get the following
table of resulting formulae for the r-th largest number with complexity k. When
these formulae are valid, we have that they are also equal to Er(k), the r-th largest
number writable with k ones, because each of them is greater than E(k− 1); hence
any n greater than such a number which was writable with k ones would also have
to have complexity exactly k (thus finally justifying our claim back in Section 2
that the expression n/E(f(n)) is a generalization of Er(k)/E(k)).

As a corollary, we see that D(n) = 0 precisely when it can be written as Er(k)/3l

for some r, k as above and some l. So we have shown:

Theorem 7.1. Given r ≥ 0, and k0 a congruence class modulo 3, there exists K
and h such that for k ≥ K with k ≡ k0 (mod 3), we have Er(k) = hE(k), where
K and h are given by the following tables:

• For k ≡ 0 (mod 3):
r h K
0 1 3
1 8/9 6
2 64/81 12
3 7/9 12
4 20/27 12
5 19/27 12
6 512/729 18
7 56/81 18
8 55/81 18
9 164/243 18

10 163/243 18
(for n ≥ 6) 2n− 1 2/3 + 2/3n 3n

(for n ≥ 6) 2n 2/3 + 1/3n 3n
• For k ≡ 2 (mod 3):
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r h K
0 1 2
1 8/9 8
2 5/6 8
3 64/81 14
4 7/9 14
5 20/27 14
6 13/18 14
7 19/27 14
8 512/729 20
9 56/81 20

10 37/54 20
11 55/81 20
12 164/243 20
13 109/162 20
14 163/243 20

(for n ≥ 6) 3n− 3 2/3 + 2/3n 3n+ 2
(for n ≥ 6) 3n− 2 2/3 + 1/(2 · 3n−1) 3n+ 2
(for n ≥ 6) 3n− 1 2/3 + 1/3n 3n+ 2

• For k ≡ 1 (mod 3):
r h K
0 1 1
1 8/9 10
2 5/6 10
3 64/81 16
4 7/9 16
5 41/54 16

(for n ≥ 4) n+ 2 3/4 + 1/(4 · 3n) 3n+ 4

Now we claim that given these formulae, it is actually possible to deduce Corol-
lary 6.3; indeed, this is the route our original proof of Corollary 6.3 took.

Fix k modulo 3, and let λ = limn→∞ hr, which is 2/3 if k is 0 or 2 modulo
3 and 3/4 if k is 1 modulo 3; i.e., λ = E(k − 1)/E(k) (save for when k = 1 or
k = 2, which are easily handled). Now suppose n is of one of the forms listed in
Corollary 6.3; checking that D(n) = 0 is then straightforward. So we just need the
converse; suppose D(n) = 0 and f(n) = k. Then n > E(k − 1) and so R(n) > λ.
Hence there exists some r with R(n) ≥ hr > λ. Thus if we let N = n3l be such that
k+3l ≥ Kr, we must have R(N) = R(n) ∈ {h0, . . . , hr−1}. (We have R(N) = R(n)
because D(n) = 0.) And given this fact it then follows from the above tables that
n is of one of the forms listed in Corollary 6.3.

Of note is that the original formulae for E0(k) and E1(k) that served as our
base cases were both originally proven directly by induction on k, which raises the
question of whether the same can be done for general Er(k) now that the formulae
for them are known.

8. Abstract results – Ternary families

In our discussion of concrete computations above, we used a small step size
α ≤ d(2), and kept our superset of Ar small by using a filtering step. In what
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follows, we will use a different trick to keep our supersets of Ar from getting too
large; we will use step sizes arbitrarily close to 1, and ignore any filtering step.

Define the set of ternary families to be the smallest set of functions Zk≥0 → N
(k varying) satisfying:

• Every “singleton” function Z0
≥0 → N is a ternary family.

• Given ternary families F : Zk≥0 → N and G : Zl≥0 → N, the function

(x, y) 7→ F (x)G(y) : Zk+l≥0 → N is a ternary family. We’ll denote this map
F ⊗G.
• Given a ternary family F and a positive integer c, the function (x, n) 7→
F (x)3n + c is a ternary family. We’ll denote this map Fc.

We’ll refer to the number of arguments of a ternary family F as its rank and
denote it rk F . Also for a ternary family F we’ll define the corresponding expanded
ternary family to be the function F̃ (x, n) = F (x)3n; we’ll use the rank of F̃ synony-
mously with the rank of F . We’ll also refer to the image of an (expanded) ternary
family as an (expanded) ternary family when there is no ambiguity.

Proposition 8.1. Given any 0 < α < 1, and any k ≥ 1, we have that Bkα is
contained in a union of finitely many ternary families of rank at most k − 1. (As
a corollary, we get the same for Akα but with expanded families.)

Proof. Induct on k using the main lemma, Corollary 5.3, and the finiteness of Sr
for any r and Tα. �

And hence:

Corollary 8.2. For any r, Br is contained in a union of finitely many ternary
families of rank at most brc. (Expanded ones for Ar.)

Proof. Note that r = (brc+ 1)(r/(brc+ 1)) and r/(brc+ 1) < 1, which proves the
claim. �

Now we will prove some bounds on the size of ternary families.

Proposition 8.3. Let S be the image of a ternary family of rank k. Then S(x) =
O((log x)k). (O((log x)k+1 for the corresponding expanded family.)

This is an easy induction from the definition of ternary family. With this we can
show:

Theorem 8.4. For any r, let k = brc; then Br(x) = Θ((log x)k), Ar(x) =
Θ((log x)k+1).

Proof. The upper bound follows immediately from the above lemmas. For the lower
bound, note that Bk contains the ternary family

F (n1, . . . , nk) = (. . . ((3 · 3n1 + 1)3n2 + 1) . . .)3nk + 1.

(None of these are multiples of three, and each have complexity at most 3(1 +
n1 + . . . + nk) + k and so have defect less than k.) If we let S be the image of

F , and S̃ the expanded version, it is easy to see that S(x) = Θ((log x)k) and

S̃(x) = Θ((log x)k+1), which proves the claim. �

(Note that barring r = 0, for which Br is empty but Br = {3}, the same holds
for Br and Ar, as Br \Br is finite by Theorem 3.3.)

So while it’s a long way from proving f(n) � 3 log3 n, at least we can prove
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Corollary 8.5. There exist numbers of arbitrarily large defect.

In fact it is true that:

Theorem 8.6. Let S be the image of a ternary family F (n1, . . . , nk) of rank k.
Then S(x) = Θ((log x)k); more specifically,

1

k!2
(log3 x)k . S(x) .

1

k!
(log3 x)k.

And if S̃ is the image of F̃ ,

1

k!(k + 1)!
(log3 x)k+1 . S̃(x) .

1

(k + 1)!
(log3 x)k+1.

But we do not have the space to prove this here and will do so in Part II. We
also conjecture:

Conjecture 8.7. For k ≥ 0 an integer,

Bk(x) ∼ (k + 1)k−1

k!2
(log3 x)k,

Ak(x) ∼ (k + 1)k−2

k!2
(log3 x)k+1.

In Part II we will motivate this conjecture, extend it to non-integers, and show
that more uniform version of it would imply that f(n) � 3 log3 n.

9. Well-ordering of defects

In this section we now prove that, as Juan Arias de Reyna previously conjectured,
the set of defects is a well-ordered subset of R, with order type ωω. (His original
conjecture actually took a slightly different form; more on that in the next section.)

Define the leading coefficient (denoted LC) of a ternary family F (n1, . . . , nk)

to be the limit lim
n1,...,nk→∞

F (n1, . . . , nk)/3
∑
ni . Note also that this can also be

determined recursively; leading coefficient of a constant is itself, LC(F ⊗ G) =
LC(F )LC(G), and LC(Fc) = LC(G). (Hence in particular LC(F ) is always fi-
nite and nonzero.) From this recursion it follows that F (n1, . . . , nk) is always at
least 3

∑
niLC(F ). Define the base complexity (denoted BC) of a ternary family

by a similar recursion; base complexity of a singleton n is f(n), BC(F ⊗ G) =
BC(F ) + BC(G), and BC(Fc) = BC(F ) + f(c). As written this is actually not
well-defined, but we can make it so by simply taking the smallest possible value if
there’s any ambiguity. Note that for any ternary family F and any n1, . . . , nk, we
have f(F (n1, . . . , nk)) ≤ BC(F ) + 3

∑
ni. Finally define the obvious defect upper

bound, UB, of a ternary family by UB(F ) = BC(F )−3 log3 LC(F ). Note that this
is, in fact, an upper bound on the defect of any number in the image of F . Also
note BC(F ) ≥ rk F + f(LC(F )) and hence UB(F ) ≥ rk F + d(LC(F )); this can
be proven by induction, using a decomposition of F such that BC always adds.

Proposition 9.1. Let S be the image of an (expanded) ternary family of rank k.
Then the set of defects of S is well-ordered, with order type less than ωk+1.

Proof. Take a ternary family F of rank k. For any n1, . . . , nk, consider the difference
between the actual complexity f(F (n1, . . . , nk)) and the upper bound of BC(F ) +
3
∑
ni. This difference can take on only finitely many values, as it cannot be more
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than UB(F ), since otherwise the defect would be less than 0; the same applies to the
expanded version. Hence we can split up Zk≥0 into a union of finitely many sets, on

each of which d(F (n1, . . . , nk)) is given by BC(F ) + 3
∑
ni− 3 log3(F (n1, . . . , nk))

minus some constant. It suffices to show that each of these sets of defects is well-
ordered with order type at most ωk, as the natural sum of finitely many ωk’s is
certainly less than ωk+1. And for this it suffices to show that the image of dF :
(n1, . . . , nk) 7→ 3

∑
ni − 3 log3(F (n1, . . . , nk)) is well-ordered, as adding constants

doesn’t change the order. (Note, by the way, that limx→∞ dF (x) = −3 log3 LC(F )
by definition of LC.)

In fact, it suffices to show that dF is monotonic; Zk≥0 is a well-partial order (in

the strong sense of that term), so any totally-ordered image of it under a monotonic
function is well-ordered. Futhermore the resulting well-order must have order type
at most ωk, as if we actually pull it back to a total order on Zk≥0 (breaking ties

between points with equal dF by looking at lexicographic order), it extends the
original partial order, and the natural product of k ω’s is in fact ωk.

To prove dF monotonic, we induct on F . For singleton functions it is trivial,
and as dF⊗G = dF + dG, if it is true for two families it is true for their product.
Finally, say G(x, n) = Fc(x, n) = F (x)3n + c; if dF is monotonic, clearly dG is
monotonic in x, so we need only check monotonicity in n. This holds because the
inequality 3n− 3 log3(F (x)3n + c) < 3(n+ 1)− 3 log3(F (x)3n+1 + c) is equivalent
to the inequality c < 3c. Hence dF is monotonic – in fact, strictly so – and we are
done. �

With this we can show:

Theorem 9.2. For any r, let k = brc; then Dr is well-ordered, with order type at
least ωk and less than ωk+1.

Proof. Well-ordering and the upper bound follows immediately from the above
lemmas. For the lower bound, once again note that Bk contains the ternary family

F (n1, . . . , nk) = (. . . ((3 · 3n1 + 1)3n2 + 1) . . .)3nk + 1.

Now if we let S the set of defects of F , we need to check that S has order type at
least ωk. But it suffices to show that the image of dF has order type ωk, since if ωk

is partitioned into finitely many parts, at least one must have order type ωk. And
this is easily checked, which proves the claim. �

Corollary 9.3. The set of all defects is well-ordered with order type ωω.

In fact it is also true that:

Proposition 9.4. Let S be the image of any ternary family of rank k. Then the
set of defects of S has order type at least ωk. (Hence also for expanded families.)

But once again we will save the proof of this for Part II.
When r is an integer, we can actually pin things down a bit more:

Theorem 9.5. Let k be an integer; then the order type of Dk is exactly ωk, unless
k = 1, in which case it’s ω + 1.

Proof. If it were any larger than ωk + 1, it would contain a copy of ωk, strictly
bounded above by a non-maximum element of Dk, hence an element of Dk less
than k. So there would be a copy of ωk bounded away from k, contradicting
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Lemma 9.2. Similarly, if it has order type equal to ωk + 1, the maximum element
must be k itself, or else we again get a copy of ωk bounded away from k. So the
order type is ωk unless k is itself a defect, which happens only when k = 1. �

10. Alternate forms of well-ordering and some conjectures of Arias

Corollary 9.3 was previously conjectured by Juan Arias de Reyna in [1] in a
slightly different form. What we have proved is that the set {n/3f(n)/3 : n ∈ N}
is a reverse well-ordered subset of Q, with reverse order type ωω. It may be more
natural to discuss R(n) rather than n/3f(n)/3, but it is easy to translate between
these if we know f(n) modulo 3. Rather than consider the set of all defects, we
will separately consider the sets {n/3f(n)/3 : n ≡ 0 (mod 3)}, {n/3f(n)/3 : n ≡ 2
(mod 3)}, {n/3f(n)/3 : n ≡ 1 (mod 3), n 6= 1}. (We exclude 1 for simplicity because
it does not follow the pattern of other n congruent to 1 modulo 3.)

These three sets are all reverse well-ordered, with reverse order type at most ωω.
To see that each has reverse order type exactly ωω, consider the ternary families

Fk(n1, . . . , nk) = (. . . ((3 · 3n1 + 1)3n2 + 1) . . .)3nk + 1

Gk(n1, . . . , nk) = (. . . ((2 · 3n1 + 1)3n2 + 1) . . .)3nk + 1

Hk(n1, . . . , nk) = (. . . ((4 · 3n1 + 1)3n2 + 1) . . .)3nk + 1.

By the same reasoning as in the proof of Theorem 9.2, each of these can be seen to
have defects with order type ωk. Furthermore, there must be an ωk’s worth meeting
the obvious upper bound, because for these families the set of defects not meeting
the obvious upper bound is bounded above by k+2d(2)−1 < k and hence has order
type less than ωk. Thus the family Fk contributes ωk’s worth to {d(n) : f(n) ≡ k
(mod 3)}, the family Gk to {d(n) : f(n) ≡ k + 2 (mod 3)}, and the family Hk to
{d(n) : f(n) ≡ k + 1 (mod 3)}.

We can now multiply each of the three sets {n/3f(n)/3 : n ≡ 0 (mod 3)},
{n/3f(n)/3 : n ≡ 2 (mod 3)}, and {n/3f(n)/3 : n ≡ 1 (mod 3), n 6= 1}by the
appropriate constants to see that each of the three sets {R(n) : n ≡ 0 (mod 3)},
{R(n) : n ≡ 2 (mod 3)}, {R(n) : n ≡ 1 (mod 3), n 6= 1} are reverse well-ordered
with reverse order type ωω. Or by using different constants, we could put 3bf(n)/3c

in the denominator instead of E(f(n)), which is the form Arias originally conjec-
tured it in. (Although his actual original conjecture was slightly stronger and would
have implied that f(3n) = f(n) + 3 for all n > 1, which is false; removing that
aspect leaves what we have proved here.)

Indeed, knowing this we can even recombine the three (together with 1) to say
that {R(n) : n ∈ N} (or {n/3bf(n)/3c : n ∈ N}) is reverse well-ordered with reverse
order type ωω. Since it’s the union of finitely many reverse well-ordered sets, it too
is reverse well-ordered, with reverse order type at least ωω. To see that it is exactly
ωω, observe that if it were any larger, then some proper final segment of it would
have reverse order type ωω; but this would decompose into a union of proper final
segments of the four sets making it up (all of them are coinitial in it as they all
get arbitrarily close to 0), implying that ωω was at most the natural sum of finitely
many ordinals less than it, which is false.

Now let A = {R(n) : n ≡ 0 (mod 3)}, let B = {R(n) : n ≡ 1 (mod 3), n 6= 1},
let C = {R(n) : n ≡ 2 (mod 3)}, and let aα, bα, cα denote the α’th element from
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the top (0-indexed, so a0 = b0 = c0 = 1) in A,B,C respectively for α < ωω. Arias
also made a conjecture which, reformulated slightly, states that for any β < ωω,

lim
n→∞

aωβ+n = (2/3)cβ

lim
n→∞

bωβ+n = (3/4)aβ

lim
n→∞

cωβ+n = (2/3)bβ

Looking at our actual data for this, it is easy to see the reason this holds for small
defect; take the first of these statements as an example. For every cβ = R(n), we
get an infinite family of numbers n3k + 1, as well as a collection of infinite families
of numbers p(q3k + 1) for pq = n, f(p) + f(q) = f(n); since these families occur
in the same order as the original n, it is the limit of R(n3k + 1) and the other
families – together with finitely many other things that don’t affect the limit –
that appear on the left hand side, and (for examples so far, anyway) this is always
eventually the obvious upper bound for sufficiently large k, and everything matches
up, with a factor of 2/3 or 3/4 to account for the change of modulo 3 complexity.
However, it is not at all clear that this pattern will hold up once we leave the realm
of products and +1’s, which we know eventually happens. So the conjecture is
somewhat explained, but far from proved.
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