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ABsTRACT. WARNING: OLD DRAFT. Define f(n) to be the integer com-
plezity of n, the smallest number of ones needed to write n using an arbi-
trary combination of addition and multiplication. John Selfridge showed that
f(n) > 3loggn for all n. Define d(n) = f(n) — 3logzn; in this paper we
present a method for classifying all n with d(n) < r for a given r. From this,
we derive a number of consequences. We prove that f (2’”3’“) = 2m + 3k for
m < 31 with m and k not both zero, and present a method that can, with
more computation, prove the same for larger m. We extend a result of Daniel
Rawsthorne by finding formulae for the r’th largest number with complexity
k, so long as k is sufficiently large relative to r. Defining A, to be the set of
all n with d(n) < r, we prove that A,(z) = O((logz)"J+1). Finally we prove
that the set of all values of d is a well-ordered subset of R, with order type
w®, as was conjectured earlier by Juan Arias de Reyna. We also make some
conjectures that suggest a possible approach for proving f(n) ~ 3logs n.

1. WARNING

I didn’t think this was necessary, but some people have been linking directly to
this, so let me warn you right here.

This is an old draft! It is not very well written, and it uses notation and ter-
minology that we’ve moved away from. Parts may be out of date. In particular,
many of the things stated here as conjectures have since been proved.

You should probably check out the paper “Numbers with Integer Complexity
Close to the Lower Bound”, by the same authors, in INTEGERS, instead. It is
considerably more well-written.

This version does contain some stuff — OK, a lot of stuff — not in that version.
We're currently working on writing that (and even more) up.

2. INTRODUCTION AND MOTIVATION

In this paper we consider the notion of integer complezity, as was introduced by
Mahler and Popken in 1953 in [6], and later popularized by Richard Guy in [3];
it appears as problem F26 in his Unsolved Problems in Number Theory [4]. We
say the complexity of a natural number n is the smallest number ones needed to
write it using any combination of addition and multiplication. For instance, 7 has
a complexity of 6, since it can be written using 6 ones as (1+1+1)(14+1)+1, but
not with any fewer. We will refer to a representation of n that uses the smallest
number of ones as most-efficient, and we will denote the complexity of n by f(n).
Note that we can compute f(n) recursively; f(1) =1, and for n > 1,
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fln)=" min fla)+ f(b).
a+b=n or ab=n

(For those interested in actually computing f, there is an algorithm slightly
faster than the naive one, due to Srinivas and Shankar and described in [8]; we
used this in our own calculations.)

The complexity of n is approximately logarithmic in n. For n > 1, we have
f(n) < 3logyn as can be seen by writing n in binary. John Selfridge showed (as
noted in [7]) that we also have f(n) > 3logs n. In more detail, let us denote by E(k)
the largest number writable with k ones. What Selfridge showed is that E(k) is
given by the formulae E(1) = 1; E(3k) = 3%; E(3k+2) = 2-3%; and F(3k+4) = 4.3k,
(Note, by the way, that for k¥ > 1, we have E(k + 3) = 3E(k).) In particular, for
any k we have F(k) < 3%/% and so for any n we have f(n) > 3logs n.

Obviously a slightly better lower bound can be obtained from Selfridge’s result,
namely, f(n) > L(n) where L(n) is given by

1 if n=1

3k if 3*<n<4-3*Tandk #0
3k+2 if 2.3F <n< 3kt

3k+4 if 4-3k<n<2.31

L(n) =

Note that L(n) is equal to the smallest number of ones needed to make a number
that is at least n, as well as the smallest k such that E(k) > n. We also have, for
n > 1, L(3n) = L(n)+3. Also observe that, past the initial 1, the ratios of successive
values of E are 3/2,4/3,3/2,3/2,4/3,3/2,...; this sequence of ratios will reoccur
later.

Not much more about the growth rate of f is known, though better upper bounds
have recently been proven. Indeed, it is not even known that f(n) » 3logs(n), a
rather weak assertion. We provide a potential approach to this problem in Sec-
tion 12.

The notion of integer complexity is somewhat similar to the more well-known
notion of addition chain length. An addition chain for n of length & is an increasing
sequence (ag, ..., a), starting with ag = 1, ending with ay = n, and such that, for
i > 0, each a; is the sum of two (possibly equal) previous terms. The length of
the shortest addition chain for n is denoted I(n) [9]. Both are ways of measuring
the complexity of a given number, and both are approximately logarithmic in n.
However they get there a bit differently — in an addition chain, once a number is
constructed once, it can then be used repeatedly at no additional cost. This is
not allowed in integer complexity; f(5) =5, asevery 1in 1+ 1+ 1+ 14 1 must
be paid for. Instead of allowing free reuse, though, we do allow multiplication.
It seems that allowing either multiplication or free reuse is enough to make the
resulting complexity measure approximately logarithmic. Interestingly, if we allow
both of these by considering 7(n), the length of the shortest addition-multiplication
chain for n, while obviously 7(n) = Q(loglogn), it is not known that 7(n) =
O(loglogn), nor is it expected to be true. In fact, the growth rate of 7 — specifically,
7(n!) — is related to the P-vs.-NP problem for Blum-Shub-Smale machines over
the complex numbers. If there is no sequence a, such that 7(a,n!) grows only
polylogarithmically, then P # NP for such machines. [2]
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Unfortunately, integer complexity seems to be lacking in nice properties. For
instance, it is not monotonic; f(11) = 8, but f(12) = 7 (via the representation
(I1+14+141)(1+1+41)). One case where it does behave nicely is powers of 3;
for n > 0 we have f(3™) < 3n, since we can write 3" as the product of n copies of
1414 1; and by Selfridge’s bound above, we do indeed have that f(3") = 3n, and
there is no shorter way of writing 3. However, if we attempt to generalize this to,
say, powers of 5, this fails; while f(5) = 5, and f(25) = 10, and f(125) = 15, it
turns out that f(55) = 29 instead of the expected 30, as 5¢ = 15626 = 1+(1+1)(1+
DA+)A+1+1)Q+1+D)A+1+D)A+DA+1D)A+1+D)A+14+1)(1+141)).

The corresponding question for powers of 2, whether f(2™) = 2m for m > 0,
is open. More generally, is f(2™3%) = 2m + 3k, if m and k are not both zero?
Janis Iraids has verified this for 2m3% < 1012 [5], so in particular f(2™) = 2m for
1 <m < 39. Note that while handling general powers of 2 is hard, fixed powers of
2 with varying powers of 3 turn out to be considerably more workable. In Section 6
of this paper we will prove:

Theorem 2.1. For m < 31 and any k with m and k not both zero, f(2m3%) =
2m + 3k.

Moreover, we will present a general method that can prove this for larger m with
more computation.

It is not too hard to prove this for smaller m; from Selfridge’s bound we see that
this holds for m < 2. Indeed, Selfridge’s result is in fact strong enough to show:

Proposition 2.2. For m < 10 and any k with m and k not both zero, f(2m3F) =
2m + 3k.

Proof. Tt suffices to show it for m = 10. Note that F(19+3k) = 4-3°+tF = 972.3% <
1024 - 3%; hence 2'°3 cannot be made with less than 20 + 3k ones. O

Define E,.(k) to mean the r-th highest number writable with k ones (where we
are zero-indexing, so Eg(k) = E(k)). Rawsthorne proved in 1989 in [7] that for
k > 6, we have Ey(k) = (8/9)E(k). From this we can conclude:

Proposition 2.3. For m < 13 and any k with m and k not both zero, f(2m3F) =
2m + 3k.

Proof. Tt suffices to show it for m = 13. Note that F;(25 + 3k) = 32 - 3>tk =
7776 - 3 < 8192 - 3F. Hence 2'33* cannot be written with less than 26 + 3k ones,
unless it is equal to E(25 + 3k) = 4 - 37T* which it is not. (]

One might ask if f(3n) = f(n)+3 for n > 1, but this is false; 107 is the smallest
counterexample, with f(107) = 16 but f(321) = 18. However, in Section 6 we will
show that this is true if n > E(f(n))/3. Furthermore in the next section we will
prove the following, earlier conjectured by Juan Arias de Reyna:

Theorem 2.4. For any m, there exists a K such that for any k > K, we have
f(3*m) =3(k — K) + f(3%m).

Now one approach to proving f(2™m3%F) = 2m + 3k for larger m might be to
directly extend Rawsthorne’s result — if one had similar formulae for E.(k) (at
least for k sufficiently large relative to r), one could apply this same technique to
push m up further. In fact such formulae exist — in Section 7 we will prove:
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Theorem 2.5. Given r > 0, and kg a congruence class modulo 3, there exists K
and h such that for k > K with k = ko (mod 3), we have E,.(k) = hE(k), where
K and h are given by tables that can be found in Section 7.

(It is also possible to prove these formulae by other methods than the ones in
this paper, but we do not have the space here to discuss such techniques.) But as
we will later see, regardless of the size of r, these cannot get us past m = 18. We
would like to consider E, (k), but this is meaningless. A change of viewpoint is
needed.

Juan Arias de Reyna in [1] found the correct way of considering these formulae
to extend them beyond the finite case. Rather than write E,.(k) = hE(k), instead
write E,.(k)/E(k) = h. Replace E,.(k) with an arbitrary n, and E(k) with E(f(n)).
So instead of talking about the highest numbers that can be made with k ones, we
can talk about the highest values of R(n) := n/E(f(n)) that can occur. It is not
obvious that this replacement is justified, i.e. that f(F,(k)) = k when k is large
enough for the appropriate formulae to hold; we will prove this when we derive the
formulae for E,.(k). We will then classify the highest values of these that can occur,
and use this to prove f(2™3%) = 2m + 3k for higher values of m < 31 and there is
no obvious obstacle to using this for any given m.

For this to really “extend the formulae for F, into the transfinite range”, we
would want the set of all values of R(n) to be a reverse well-ordered subset of Q.
This turns out to be true:

Theorem 2.6. The set of all values of R(n) is reverse well-ordered, with order
type w*.

Arias conjectured this in [1] and we will prove this in Sections 9 and 10.

3. INTRODUCTION PART 2 — DEFECT AND INTEGRAL DEFECT

While F is easy to compute, it is still not the easiest to work with, so instead
of n/E(f(n)) we will prefer to consider n/3/(")/3. Nothing is lost if we switch to
this formulation; 3¥/% = cE(k) for a constant ¢ depending only on the residue class
of k modulo 3 (and whether or not k¥ = 1), so if we know what k is modulo 3 it
is then easy to convert back and forth between the two notions. Indeed, n/3/(")/3
actually carries more information, as due to the irrationality of 3'/3 and 3%/3 we
can from this number determine the residue of f(n) modulo 3 and thus determine
R(n), whereas the reverse is not possible. (The case n = 1 puts a slight snag in this,
but it easy to see that if n/37(")/3 = 371/3 then we must have n = 1, as otherwise
we would have f(n) = 4 -3 but n = 4 -3¥~1, an impossibility. More on this in a
moment.)

We will make one more change of viewpoint — instead of working with n/3/ (n)/3,
we will work with f(n) — 3logg(n), which we will denote d(n) and call the defect of
n. This encodes the same information, as they’re related by n/3f(”)/3 = 3-4(n)/3;
in particular from it we can deduce both R(n) the residue of f(n) modulo 3. The
problem now becomes to classify numbers of small defect — numbers with complexity
close to the lower bound.

We will prove in Section 8 is that there are not very many numbers with com-
plexity close to the lower bound:
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Theorem 3.1. Let A, denote the set of all n with d(n) < r, and let A,(x) denote
the number of elements of A, which are less than x. Then for any r > 0, we have
A, (z) = O((log )7 I+1),

To be concrete about the equivalence between d and R,
—3logs(R(n)) if f(n)=0 (mod 3)
—3logs(R(n))+d(2) if f(n)=2 (mod 3)
—3logs(R(n))+2d(2) if f(n)=1 (mod3)andn #1
0 if n=1

d(n) =

In fact d(n) encodes enough information that we have:

Lemma 3.2. If d(n) = d(m) for two numbers n and m, then either n = m3* for
some k or vice versa. Indeed if d(n) — d(m) is any rational number, in particular
any integer, the same conclusion holds.

Proof. If d(n) — d(m) is rational, then logs(n/m) is rational; since n/m is rational,
the only way this can occur is if logs(n/m) is an integer. O

Of course, there is a better lower bound than 3logs(n), namely L(n), so define
D(n) = f(n) — L(n), the integral defect of n. We will not typically work with this
directly, however, as it is much less convenient and is a lossy notion; for instance,
D(n) = 0 for all n from 1 to 10. To say D(n) = 0 is to say f(n) = L(n), that
is, f(n) is the smallest k such that FE(k) > n, or in other words, that E(f(n)) is
the smallest value of E which is at least n. So more generally to say D(n) = I,
or L(n) = f(n) — I, then, is to say that E(f(n)) is the I-th value of E past the
smallest one which is at least n. Thus what D actually tells is how many values
E(k) there are such that n < E(k) < E(f(n)), it being one less than this number.
Since (barring the initial 2/1) the ratios of successive values of E repeat with a
period of 3, it follows that D(n) is actually telling us the broad range in which
R(n) falls, though the changeover points will depend on the residue of f(n) modulo
3. (Hence if we know d(n), since we can determine R(n) and the residue of f(n)
modulo 3, we can determine D(n).)

Equivalently, to say that D(n) <, is the same as to say that, n is greater than
all numbers m with f(m) < f(n)—1. Thus, D(n) = 0 is the same as to say that n is
greater than all m with f(m) < f(n). Note that D is numerically close to d, since
L(n) is close to 3logs n; for any n, by using the formulae for E and L we can see that
3loggn < L(n) < 3logzn+1+42d(2), and therefore D(n) < d(n) < D(n)+1+2d(2).

Note that if n = ab with f(n) = f(a) + f(b) — k, then d(n) = d(a) + d(b) — k,
and in particular d(3n) = d(n) if and only if f(3n) = 3+ f(n). Similarly note for
n > 1,if f(3n) = f(n) + 3 — k, then D(3n) = D(n) — k.

The notion of defect gives us an easy proof of the following conjecture of Arias:

Theorem 3.3. For any m, there exists a K such that for any k > K, we have

f(3*m) =3(k — K) + f(3%m).

Proof. For any n, note that d(3n) < d(n), with equality if and only if f(3n) = f(n)+

3. So the sequence d(m), d(3m),d(9m), ... is non-increasing, nonnegative, and can

only decrease in integral amounts, hence it must eventually stabilize, which proves

the theorem. (The proof could be done with D instead with little modification.) O
Note that this still leaves open

Question 3.4. In Theorem 3.3, is it possible to get a bound on K based on m?
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4. MAIN LEMMA

Here, we state and prove what will be our primary tool for the rest of the paper.
Given any r > 0, we can, by applying this lemma repeatedly, put restrictions on
what n can satisfy d(n) < r.

For any real r > 0, define A, to be {n € N : d(n) < r}; define D, to be
{d(n) : n € N,d(n) < r}; and define B, to consist of those elements of A, that
cannot be written most efficiently as 3m for any m (so that A, consists precisely of
elements of B, times powers of 3). Define A4,, D,, and B, to be like A,, D,, and
B, but with nonstrict inequalities.

We will use the main lemma to inductively build up a superset of A,.. Note that
as a consequence of Rawsthorne’s result that Ey (k) = (8/9)E(k) for k > 6, we have
that for any n, if R(n) > 8/9 then R(n) = 1. Considering what this yields for
d(n) (depending on n modulo 3), we see that d(2) = 2 — 3logg 2 = 0.107... is the
smallest non-zero defect, i.e. Ay(2) consists only of powers of 3. This is the base
case to which our lemma is the inductive step.

(Though we will later derive the previously mentioned formulae for E,.(k) as a
consequence of this base case and main lemma, it is actually possible to prove them
by an entirely different method which does not use Rawsthorne’s result as a base
case. Again, however, we do not have the space to discuss such here.)

Finally define T,, to consist of those natural numbers n < —L— + 1 whose
373 —1
only shortest representation is as either 1 or as (n — 1) + 1. Note that for o < 1,
we have that T, is a finite set. Then:

Proposition 4.1. For any a <1 and k > 2, any element of B(x41)a can be written
most efficiently in one of the following forms:

(1) A product of an element of Bio and an element of Bjo withi+j =k+2
and 2 <i,j < k, with defects totalling less than (k + 1)a;
(2) An element a of Ay plus a number b < a such that

d(a) + f(b) < (k+ 1)a+ 3logs 2,

possibly times an element of Bg;
(3) Or an element of T, possibly times an element of Bo;

And any element of Ba, can be written in one of the following forms:

(1) A product of up to three elements of Bo,, with defects totalling less than 2c;
(2) An element a of Ay plus a number b < a such that

d(a) 4+ f(b) < 2a + 3log, 2,

possibly times an element of Bg;
(3) Or an element of T,, possibly times an element of B,.

Proof. Suppose m € B(i11)q; take a most efficient representation of m, which is
either ab, a + b, or 1. If m = 1, we are done.

Suppose m can be most efficiently written as a product, say as [[;_, m; (where
r > 2 and each m; cannot be written most efficiently as a product); so >.._, d(m;) =
d(m) < (k + 1)a. Note that no product of a subset of the m; can be written most
efficiently as 3 times another number, as else we could choose one of the m; to
be 3, contrary to the assumption m € B y1)o. If k > 2, then either there exists
an ¢ with d(m;) > ka, or else we can partition the d(m;) into two nonempty
sets each with sum less than ko; in this case, call their products a and b. Then
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d(a) + d(b) < (k+ 1), so if we let (i — 1)a be the largest multiple of o at most
d(a), then d(b) < ja if we let j = k+ 2 — 4. If such a partition is not possible, then
letting a be m; with d(m;) > ka, and b the product of the others, then m is the
product of an element of B, and an element of B(;1), which cannot be written
as a product; see next paragraph for how to handle this. In the case k = 1, either
there exists an ¢ with d(m;) > ka, or else we can partition the d(m;) into either
two or three nonempty sets each with sum less than «, so either we have the “see
next paragraph case”, or we have a product of three elements of B,.

So now we have to determine what elements of B(;41), cannot be written in
this way, both to complete the multiplication case and to handle the addition case.
Suppose m = a + b with f(m) = f(a) + f(b) and b minimal, so a > b. Then

fla)+ f(b) = f(m) < 3logg(a+b) + (k+ 1)a < 3logs(2a) + (k+ 1)«

sod(a)+ f(b) < (k+1)a+3logs 2. Furthermore, b cannot be written most efficiently
as a sum ¢ + d or else we could regroup a + (¢ + d) as (a + ¢) + d which would
contradict the minimality of b.

If a € Ak, we are done. Otherwise, we have

3logga+ ka+ f(b) < f(a) + f(b) = f(m) <
3logs(a+b) + (k+ 1)a < 3log;(2a) + (k + 1)a,

so f(b) < 3logs2 + a; since o < 1, we have f(b) < 2 and thus b < 2; by the
assumption that b cannot be written most efficiently as a sum, we have b = 1.
Hence 3logga + ka + 1 < 3logs(a + 1) + (k + 1)a; if we solve for a, we find that
m =a+ 1 € T,; and we may assume that this is the only most efficient way to
write m as otherwise it would be covered in one of the other cases. d

Note that while we specified that the representation is most efficient, and in-
cluded constraints based on the defects of the numbers in the already-known A,
we don’t really need either of these for most purposes, when we are just interested
in computing some superset of A(x11)o. We don’t even have any easy way of check-
ing whether the resulting reprentations are most-efficient, after all. In particular,
in the addition case, note that the requirement that d(a)+ f(b) < (k+1)a+3logs 2
implies the weaker requirement that just f(b) < (k + 1)a + 3logg 2, or just L(b) <
(k+ 1) + 3logg 2. We'll define the set of b satisfying f(b) <  + 3logs 2 to be Sy;
note that S, is always finite.

For A;, and B}, we have a similar theorem — just use B,’s instead of B,’s in the
pure product case and use a nonstrict inequality — and the proof is the same except
for the strictness of the inequalities. Whether we state theorems in terms of A, or
A, will depend on convenience, but typically the distinction will not matter since
A, \ A, can consist of at most a single number times powers of three.

5. COMPUTATION AND BOOTSTRAPPING

We will explicitly computing the set A;. We do this for two reasons. Firstly,
we will later compute A, for larger r, so Ay is on the way. Secondly, later results
in Section 8 and onward will depend on one the structure of A;. This section
accomplishes a sort of bootstrapping — we compute A; using A2y as our base case,
but once we have A; it will become our new base case.
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Since we want to compute A, we will here discuss how we can use the main
lemma to compute A, for small . The main lemma allows us to inductively con-
struct a superset of A,., but if we want to determine A, itself — and if we don’t want
this computation to blow up very quickly — we’ll need some way of then determining
the actual complexities of the resulting candidates.

Upper bounds are easy. To find lower bounds on complexities, we will typically
use the following technique: Say we want to show that f(n) > k; since f(n) is
always an integer, it suffices to show f(n) > k — 1, which we do by noting that if
f(n) < k—1 held, it would put n in some A; which we have already determined
and know it’s not in. In particular, we have:

Lemma 5.1. Toke o < 1/2. Say d(a) < iaw and d(b) < ja, and let k+2 =i+ j.
Then f(ab) = f(a) + f(b) unless d(ab) < ko

Proof. Note
f(ab) > 3logs(ab) + ko = 3logga + 3logs b+ (i + j — 2)a > f(a) + f(b) — 1
so f(ab) > f(a) + f(b), done. O

Lemma 5.2. Take o < d(2). Say d(a) < ka, then f(3™(a+1)) =3m+ f(a) +1
unless d(3™(a+ 1)) < ka.

Proof. Note
f(8™(a+1)) > 3logz(a+1)+3m+ ka > f(a) +3m
so f(3™(a+1)) > 3m+ f(a) + 1, done. O

With these two lemmas in hand, and the base case knowledge of A,, for a < d(2),
we can pick a step size a < d(2) and inductively compute Ag,. If we know Ag,, and
the complexities of the numbers therein, first we use the main lemma to generate
candidates for A(j1)o; then we check which of these are already in Ag,. For those
numbers that are already in, we are done. For those that are not, we can use
the above two lemmas to determine their complexities and hence whether they are
actually in. This works so long as koo < 5 —3logs 2 = 3 +d(2) (or k < 28), as then
Ska = {1}

So for A, for r < 3+ d(2), we have a method to determine A,, which is almost
an algorithm — unfortunately to turn it into an actual algorithm, we would need
some way to represent the data that would allow the required operations, and we
have not figured this out. Hence all our computations have been done by hand.
This method works for r > 3 + d(2) as well, by specially tweaking Lemma 5.2 and
the additive case of the main lemma to handle additive constants other than 1, but
we will not discuss this here.

It isn’t obvious that expressions of the form a+b are ever relevant when a, b # 1;
Rawsthorne’s computations in [7] failed to uncover any most-efficient representa-
tions a+b with a, b # 1, for instance. However, such numbers do exist, as Arias and
Van de Lune found [4]; they even give a prime p which is most efficiently represented
as 6 4+ (p — 6) but not 1+ (p — 1), namely 353942783 = 6 + 353942777.

In any case, we can then compute that the numbers with defect less than 1 are
as follows:

e 3% of complexity 3k for k > 1
e 223% of complexity 2a + 3k for a < 9
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5-223F of complexity 5 + 2a + 3k for a < 3
7-2%3% of complexity 6 + 2a + 3k for a < 2
19 - 3% of complexity 9 + 3k
13 - 3% of complexity 8 + 3k
(3" 4 1)3* of complexity 1+ 3n + 3k (unless n = 0)
(Note also 1 is the only number of defect exactly 1.) The real significance of this
list, however, that makes everything in Section 8 and onward work, is:

Corollary 5.3. For every a < 1, we have that B, is a finite set.

Note this fails for By; the defects of (3" + 1)3* approach 1 as n approaches
infinity.

6. FURTHER RESULTS OF COMPUTATION

Using the above method we have in fact classified all numbers with defect less
than 22d(2) = 2.3586.... This is greater than 2 4 2d(2) so this in particular allows
us to determine all numbers with integral defect at most one.

Due to its length, we have attached a table of the results separately.

Since determining A, allows us to put lower bounds on the complexities of any
numbers not in it. we have the following;:

Lemma 6.1. Suppose that none of 2"1°3F lie in Apacz) for any k. Then for any
m <n+9 and any k (with m and k not both zero), f(23%) = 2m + 3k.

Proof. Tt suffices to show that f(2"793%) > 2n + 3k + 17, but by assumption,
F(2793%) > (n 4 9)3logs 2 + 3k + nd(2) = 2n + 3k 4 27log, 2 > 2n + 3k + 17,

and we are done. O

From our classification, it is straightforward to check that 2313* does not lie in
Agaq(2y for any k, so we can conclude

Corollary 6.2. For m < 31 and any k with m and k not both zero, f(2m3F) =
2m + 3k.

as we claimed above. We can also classify the set of n with D(n) = 0 as follows:

Corollary 6.3. The n with D(n) = 0 are precisely those numbers that can be
written in one of the following forms:

o 2m3F with m < 10

e 20(2°3! + 1)3F with a + b < 2.

We will show in Section 7 that from this statement we can deduce formulae
for the E,.(k) (for k sufficiently large relative to r), and vice versa; it will turn
out that the n satisfying D(n) = 0 are almost exactly the numbers that can be
written as F,.(k) for such k and r. Meanwhile we leave it to the reader to see how
Corollary 6.3 implies that f(2™3%) = 2m + 3k for m < 18 with m and k not both
zero. Obviously a similar classification could be made for D(n) < 1, but it is ugly
and unenlightening so we have not listed it here.

Our computations also tell us a little about the question of when f(3n) is equal
to f(n) + 3. We see that aside from 1, the number of smallest defect for which
f(3n) # f(n) + 3 is 683. We also see that
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Corollary 6.4. If D(3n) = 0, then D(n) = 0, and if D(3n) = 1, then D(n) = 1.
Hence if D(n) <2 andn # 1, f(3n) = f(n) + 3.

If we rewrite the condition D(n) < 2 as D(n) < 3, and observe that D(n) < 3 if
and only if R(n) > 1/3, then can rewrite this conclusion as

Corollary 6.5. Forn > 1, ifn > E(f(n))/3, then f(3n) = f(n) + 3.

Knowing Ay makes the “a to 2a” case of the main lemma unnecessary, but we
haven’t computed the full ordering on the set of defects less than 2 so it’s easier to
use the main lemma.

7. FORMULAE FOR E,(n)

As mentioned in in the previous section, Corollary 6.3 is equivalent to a series
of formulae for E,. (k) that work so long as k is sufficiently large depending on r,
and the F,(k) obtained this way are almost exactly the n satisfying D(n) = 0. In
this section we prove this. (Though we do not include here our original proof of
Corollary 6.3, it is worth noting that our original proof went the other way — it
proved Corollary 6.3 by way of these formulae. Hence why we formulate this as an
equivalence rather than just stating that the formulae are a corollary.)

Fix k modulo 3. The numbers n with D(n) = 0 and f(n) =k (mod 3) are the
numbers of lowest defect (or highest R) with f(n) = k (mod 3). If we look at the
numbers n with integral defect of 0 and split them up by their complexity modulo
3, we get that n is one of:

e For f(n) =0 (mod 3):
— (2-3™ +1)3% with R(n) = 22+
— 2(3™ +1)3 (for m > 1) with R(n) = 2& 11
— 64 -3F with R(n) = 64/81
— 512 3% with R(n) = 512/729
e For f(n) =2 (mod 3):
— (4-3™ + 1)3* with R(n) = 43741
2(2-3™ 4 1)3* with R(n) = 223D
4(3™ + 1)3F (for m > 1) with R(n) = L& 40
2-3F with R(n) =1
128 - 3% with R(n) = 64/81
— 1024 - 3% with R(n) = 512/729
e For f(n) =1 (mod 3), n # 1:
— (3™ +1)3% (for m > 1) with R(n) = @+
— 32.3F with R(n) =8/9
— 256 - 3% of R(n) = 64/81

Note that from the above tables, for each congruence class of k£ modulo 3, the
numbers n with D(n) = 0 are precisely those with the w largest values of R, or
w smallest defects, among m with f(m) = k (mod 3) — this is what will give us
the connection between n with D(n) = 0, and the formulae for E,.(k), the largest
numbers writable with &k ones. (Indeed, we expect that more generally, for each
congruence class of £ modulo 3, the numbers n with D(n) < m are precisely those
with the w™ largest values of R; see Section 12 for why.)

Suppose we want to determine the r-th largest number with complexity k. From
these tables, we can determine the r-th largest value of R that occurs for numbers
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with complexity congruent to k¥ modulo 3. Call this value h; then hE(k) is indeed
the r-th largest number with complexity k if and only if all 7 + 1 values of R that
are at least h and occur for numbers with complexity congruent to k& modulo 3,
do indeed occur for numbers with complexity k. We also know that if D(3n) = 0,
then D(n) = 0, or in other words, that if D(n) = 0 and k = f(n) (mod 3), then
n can be written with k ones if and only if R(n)E(k) is an integer. So this take
k to be large enough for all of these to be integers; hence we get the following
table of resulting formulae for the r-th largest number with complexity k. When
these formulae are valid, we have that they are also equal to E,.(k), the r-th largest
number writable with k ones, because each of them is greater than E(k — 1); hence
any n greater than such a number which was writable with k ones would also have
to have complexity exactly k (thus finally justifying our claim back in Section 2
that the expression n/E(f(n)) is a generalization of E,.(k)/E(k)).

As a corollary, we see that D(n) = 0 precisely when it can be written as E,.(k)/3!
for some r, k as above and some [. So we have shown:

Theorem 7.1. Given r > 0, and kg a congruence class modulo 3, there exists K
and h such that for k > K with k = ko (mod 3), we have E,.(k) = hE(k), where
K and h are given by the following tables:

e for k=0 (mod 3):

r h K
0 1 3
1 8/9 6
2 64/81 12
3 7/9 12
4 20/27 12
5 19/27 12
6 512/729 18
7 56/81 18
8 55/81 18
9 164/243 18

10 163/243 18
(forn>6) 2n—1 2/3+2/3" 3n
(forn>6) 2n 2/3+1/3" 3n

e For k=2 (mod 3):
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r h K
0 1 2
1 8/9 8
2 5/6 8
3 64/81 14
4 7/9 14
5 20/27 14
6 13/18 14
7 19/27 14
8 512/729 20
9 56/81 20
10 37/54 20
11 55/81 20
12 164/243 20
13 109/162 20
14 163/243 20
(forn>6) 3n—3 2/3+2/3" 3n+2
(forn>6) 3n—2 2/3+1/(2-3"71) 3n+2
(forn>6) 3n-—1 2/3+1/3" 3n+2
e For k=1 (mod 3):
T h K
0 1 1
1 8/9 10
2 5/6 10
3 64/81 16
4 7/9 16
5 41/54 16

(forn>4) n+2 3/4+1/(4-3") 3n+4

Now we claim that given these formulae, it is actually possible to deduce Corol-
lary 6.3; indeed, this is the route our original proof of Corollary 6.3 took.

Fix k modulo 3, and let A = lim,,_, o hy, which is 2/3 if k is 0 or 2 modulo
3 and 3/4 if k is 1 modulo 3; i.e., A = E(k — 1)/E(k) (save for when k = 1 or
k = 2, which are easily handled). Now suppose n is of one of the forms listed in
Corollary 6.3; checking that D(n) = 0 is then straightforward. So we just need the
converse; suppose D(n) = 0 and f(n) = k. Then n > E(k — 1) and so R(n) > .
Hence there exists some r with R(n) > h, > X. Thus if we let N = n3! be such that
k+3l > K,, we must have R(N) = R(n) € {ho,...,hr—1}. (We have R(N) = R(n)
because D(n) = 0.) And given this fact it then follows from the above tables that
n is of one of the forms listed in Corollary 6.3.

Of note is that the original formulae for Ey(k) and E;(k) that served as our
base cases were both originally proven directly by induction on k, which raises the
question of whether the same can be done for general E,. (k) now that the formulae
for them are known.

8. ABSTRACT RESULTS — TERNARY FAMILIES

In our discussion of concrete computations above, we used a small step size
a < d(2), and kept our superset of A, small by using a filtering step. In what
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follows, we will use a different trick to keep our supersets of A, from getting too
large; we will use step sizes arbitrarily close to 1, and ignore any filtering step.

Define the set of ternary families to be the smallest set of functions Z’;O — N
(k varying) satisfying: N

e Every “singleton” function Z%, — N is a ternary family.

e Given ternary families F : Z%, — N and G : ZL, — N, the function
(z,y) = F(2)G(y) : ZX5' — N is a ternary family. We'll denote this map
F®da. -

e Given a ternary family F' and a positive integer ¢, the function (x,n) —
F(z)3™ + ¢ is a ternary family. We’ll denote this map F..

We'll refer to the number of arguments of a ternary family F' as its rank and
denote it rk F'. Also for a ternary family F' we’ll define the corresponding expanded
ternary family to be the function F(z,n) = F(x)3"; we’ll use the rank of F synony-
mously with the rank of F.. We’ll also refer to the image of an (expanded) ternary
family as an (expanded) ternary family when there is no ambiguity.

Proposition 8.1. Given any 0 < a < 1, and any k > 1, we have that By, is
contained in a union of finitely many ternary families of rank at most k — 1. (As
a corollary, we get the same for Ay, but with expanded families.)

Proof. Induct on k using the main lemma, Corollary 5.3, and the finiteness of S,
for any r and Ty. O

And hence:

Corollary 8.2. For any r, B, is contained in a union of finitely many ternary
families of rank at most |r|. (Expanded ones for A,.)

Proof. Note that r = (|r] + 1)(r/(|r] +1)) and r/(|r] + 1) < 1, which proves the
claim. g

Now we will prove some bounds on the size of ternary families.

Proposition 8.3. Let S be the image of a ternary family of rank k. Then S(z) =
O((logz)*). (O((logz)**1 for the corresponding expanded family.)

This is an easy induction from the definition of ternary family.
In fact, we have:

Theorem 8.4. Let S be the image of a ternary family F(ny,...,ng) of rank k.
Then S(x) = O((log x)*); more specifically,

1 1
— (logs fc)k SS(r) S H(k’gs z)k

k!2
And if S is the image of F,
1 ~ 1
1 k+1 < < 1 k+1.

Proof. We'll consider the expanded-out form of F', as a sum of terms each of the
form ¢3%+t2ic1 ™ for some a > 0, 31 ¢, and I C [k]. Consider the set C of such I
that occur and partially order it under inclusion. Note that if we actually take the
various a + ) ;. n; for specific n;, they respect this order except on a finite union
of proper “affine subspaces” of the domain (since if the order is violated, we have
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> icy i < m for some J and m), so exclude these and call this restricted domain
X. Indeed, all sufficiently large points lie in X. (By an “affine subspace” of Z%,
we mean the intersection of ZX, with an affine subspace of Q¥.)

Then if we let T'(x) be the set of all (ni,...,n;) such that F(n,...,n;) < z,
we have |T(z) N X| ~ 7;(logs)". The problem, then, is just to show that this
translates to S(z); we will do this by showing that F' is at most k!-to-1 outside a
finite union of proper affine subspaces of the domain.

Note that any ternary family has a constant term (constant term of () — m is m,
constant term of G is ¢, constant term of G® H is product of their constant terms).
Observe that for each argument n; there is a unique minimal element of C that
contains it; we’ll call this the key of n,. (If F = G ® H with n; an argument to G,
key of n; is its key in G times constant term of H; if F'(nq,...,nk) = Ge(nq,...,nk)
with i # k, key of n; is its key in G times 3"%; if ¢ = k its key is 3™ times constant
term of G.) Furthermore, by a straightforward induction using the above, no two
arguments to F' have the same key. (If F': () — m this is trivial. If F = G® H, two
arguments to same factor, true by inductive hypothesis; if to different factors, their
keys are disjoint. If F = G, two arguments to G, true by inductive hypothesis; if
one is ng, true as one key is just {ny} and the other isn’t.)

We don’t want any the exponent a + >, ; n; of any two keys to be equal, but
this is again just excluding a finite number of proper affine subspaces, so if Y is the
new domain, we still have [T(z) N Y| ~ 7 (logs z)*.

Suppose (ny,...,ng) € Y; we claim that if we know F(ny,...,n) and the total
order (ny,...,n;) induces on the keys by looking at their exponents (by assumption,
it makes no two of them equal), we can reconstruct (ni,...,nx), meaning that F
is at most k!-to-1 on Y.

To determine (nq,...,ng), we can now use the following algorithm:

(1) Initialize the set ® of known arguments to (J, and the remaining number N
to F(ny,...,ng).
(2) Repeat the following until ® = [n]:
(a) Determine all terms that can be determined from the variables cur-
rently in ®@; subtract the resulting numbers from N.
(b) Pick the lowest key whose corresponding n; does not already have
i € ®; say it’s ¢3%F2ier ™ not already picked. All but one argument
in I, say ny, will already be in ® and have values recorded. We can
determine this n; via a+ 3, ; n; = v3(N), where v3(N) is the highest
power of 3 dividing IV; so add j to ® and mark down the above stated
value for n;.

So to finish the proof we must justify the claims made in the statement of the
algorithm and show that it yields the only possible value for (ni,...,n;). That
there will only ever be one j € I not already in ¢ follows because I is a key, say
the key of n;; then for each other ¢ € I, there must be a smaller (in the partial
order) J that contains it, or else I would be the key of both n; and n;; and since
we are assuming (nq,...,n,) € Y, any such variables have keys less than [ in the
total order, and hence (by construction) have already been determined and added
to .

So it just remains to show that we must indeed have a+) ;. n; = v3(IV) above,
that we are forced to determine n; thus. This amounts to showing that IV is a sum

of terms of the form ¢34, where 3 { ¢ and each A is greater than a + > _icr i except
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for the occurrence of such from I itself. But if we had such a term, and it were a
key, then by assumption it would have been already determined and subtracted off;
and if it weren’t a key, then since (nq,...,ny) € Y, its keys would be even smaller,
and would have been already determined, and so it would have been subtracted off
too.

Hence F' is at most k!-to-1 on Y and the theorem follows.

A similar argument shows that F is also at most kl-to-1 on Y (though it’s
technically not the same Y'), so it holds for expanded families as well. ([

So we have:

Theorem 8.5. For any r, let k = |r|; then B.(z) = O((logz)¥), A.(z) =
O((log z)*+1).

Proof. The upper bound follows immediately from the above lemmas. For the lower
bound, note that By contains the ternary family

F(ny,...,n5) = (.. ((3-3™ +1)3" +1)...)3" + 1.

(None of these are multiples of three, and each have complexity at most 3(1+nq +
...+ ng) + k and so have defect less than k.) Hence the lower bound follows from
the above lemmas as well. (Although checking the lower bound for this particular
family is a lot easier than proving Lemma 8.4 in general!) (]

(Note that barring r = 0, for which B, is empty but B, = {3}, the same holds
for B, and A, as B, \ B, is finite by Theorem 3.3.)
So while it’s a long way from proving f(n) » 3logs n, at least we can prove

Corollary 8.6. There exist numbers of arbitrarily large defect.

9. WELL-ORDERING OF DEFECTS

In this section we now prove that, as Juan Arias de Reyna previously conjectured,
the set of defects is a well-ordered subset of R, with order type w®. (His original
conjecture actually took a slightly different form; more on that in the next section.)

Define the leading coefficient (denoted LC) of a ternary family F(ni,...,ng)
to be the limit lim  F(ni,...,nz)/32=". Note also that this can also be

N ,..., N —>00

determined recursively; leading coefficient of a constant is itself, LC(F ® G) =
LC(F)LC(G), and LC(F.) = LC(G). (Hence in particular LC(F') is always fi-
nite and nonzero.) From this recursion it follows that F(ni,...,ng) is always at
least 32" LC(F). Define the base complexity (denoted BC) of a ternary family
by a similar recursion; base complexity of a singleton n is f(n), BC(F ® G) =
BC(F) + BC(G), and BC(F,) = BC(F) + f(c). As written this is actually not
well-defined, but we can make it so by simply taking the smallest possible value if
there’s any ambiguity. Note that for any ternary family F and any nq,...,ng, we
have f(F(ni,...,n;)) < BC(F)+ 3> n;. Finally define the obvious defect upper
bound, UB, of a ternary family by UB(F) = BC(F)—3log; LC(F). Note that this
is, in fact, an upper bound on the defect of any number in the image of F'. Also
note BC(F) > rk F + f(LC(F)) and hence UB(F) > rk F + d(LC(F)); this can
be proven by induction, using a decomposition of F' such that BC' always adds.

Proposition 9.1. Let S be the image of any (expanded) ternary family of rank k.
Then the set of defects of S is well-ordered, with order type less than w**?.
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Proof. Take a ternary family F' of rank k. For any ny, ..., ng, consider the difference
between the actual complexity f(F'(ni,...,n;)) and the upper bound of BC(F) +
35" mn;. This difference can take on only finitely many values, as it cannot be more
than U B(F), since otherwise the defect would be less than 0; the same applies to the
expanded version. Hence we can split up Z’;O into a union of finitely many sets, on
each of which d(F(n1,...,ng)) is given by BC(F) +3%n; —3logs(F(ny,...,nx))
minus some constant. It suffices to show that each of these sets of defects is well-
ordered with order type at most w¥, as the natural sum of finitely many w*’s is
certainly less than w®*1. And for this it suffices to show that the image of dp :
(n1,...,ng) — 3> n; —3logs(F(nq,...,ng)) is well-ordered, as adding constants
doesn’t change the order. (Note, by the way, that lim,_,~ dr(xz) = —3logg LC(F)
by definition of LC.)

In fact, it suffices to show that dg is monotonic; Z’;’O is a well-partial order (in
the strong sense of that term), so any totally-ordered image of it under a monotonic
function is well-ordered. Futhermore the resulting well-order must have order type
at most w”, as if we actually pull it back to a total order on Z’;O (breaking ties
between points with equal dp by looking at lexicographic order), it extends the
original partial order, and the natural product of k w’s is in fact w”.

To prove dp monotonic, we induct on F. For singleton functions it is trivial,
and as dpgg = dp + dg, if it is true for two families it is true for their product.
Finally, say G(z,n) = F.(z,n) = F(x)3"™ + ¢; if dr is monotonic, clearly dg is
monotonic in x, so we need only check monotonicity in n. This holds because the
inequality 3n — 3logs(F(2)3™ +¢) < 3(n + 1) — 3logs(F(2)3" ! + ¢) is equivalent
to the inequality ¢ < 3c. Hence dp is monotonic — in fact, strictly so — and we are
done. (]

In fact, we also have:

Proposition 9.2. Let S be the image of any ternary family of rank k. Then the
set of defects of S has order type at least w*. (Hence also for expanded families.)

Proof. The proof will imitate that of Theorem 8.4; unfortunately it will be slightly
more complicated, due to the necessity of working from the left rather than the
right.

Note first that using dp from the proof of Proposition 9.1, it suffices to show
that the image of Z’;O under dr has order type at least w¥, since the image of dp
can as described above be written as a finite union of translates of subsets of d(S),
so if d(S) had order type less than w”, the image of dr would have order type at
most the natural sum of finitely many ordinals each less than w*. So we will exhibit
a subset of Z& ; whose image under dr has order type w”.

Once again write F(nq,...,ng) = >, 3% Xict™ with a > 0, 3t ¢, and I C [n],
so that dp(n1,...,n,) = —3logs(3 €39~ 2igr ™). Once again let C be the set of T
that occur, partially ordered under inclusion. Since we are now working from the
left, for each argument n; we’ll look at its anti-key — the unique maximal set in C
that doesn’t include it. (If F' = G ® H with n; a variable in G, this is its anti-key
in G times the leading term of H; if F' = G. with i # k, this is its anti-key in G
times 3™*; and if 4 = k, this is the leading term of G. Where the leading term of
F has all arguments in its exponent, and so the leading term of () — m is m, that
of G ® H is that of G times that of H, and that of G, is that of G.) Note that
the coefficient ¢ of the leading term is not what we defined earlier as the leading
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coefficient, which is ¢3%. As with keys, no two arguments have the same anti-key,
by a straightforward induction. (If F': () — m, this is trivial; if F = G ® H, both
arguments to same factor, true by inductive hypothesis; if to different factors, each
is included in the other’s anti-key; if F' = G, one of the arguments is ny, then the
other’s anti-key includes ny; if neither is ng, true by inductive hypothesis.)

This time, we will let X be the set of (ni,...,n;) that yield an order on the
values [loggc|+a—37,4; n; (equivalently on |loggc| +a+ 37, n;) that respects
the partial order on the terms; the extra |logsc| is because we are now working
from the left rather than the right — we care where the ternary representation of
c starts rather than where it ends. As before, X consists of just removing finitely
many “proper affine subspaces” from the domain. Indeed, once again, the stronger
statement that all sufficiently large points lie in X remains true. (Recall, by an
“affine subspace” of Z% we mean the intersection of Z%, with an affine subspace
of QF.)

Now pick a total order < on the anti-keys extending their partial order (there
is at least one such). Let Y be the subset of X on which for any anti-key 77 =
3% 2ign ™ and any other term Tp = 3% Xign ™ with Ty C Ty < T, for
some anti-key T3, we have a1 — >_,q; > [loggca] + a2 — 32,4, (ie. the ternary
representation of T5 is fully to the right of that of T7). (Again, note that last time
we only needed to prevent collisions of keys; working from the left we are required to
additionally prevent collisions of anti-keys with other terms, because terms extend
to the left, not the right.)

Put an order < on the arguments given by < on their anti-keys. What we now
need is that, firstly, on Y, the dr order is lexicographic, if we read the arguments
in decreasing order with respect to <; and secondly, Y is actually big enough to
contain an w®.

So relabel nq,...,n; as my,...,mg with mp < ... < m;. Now say we have
(nf,...,n}) and (nf,...,n}) which we relabel with m/,...,m}, and m{,...,m{,
and say mj = m/ for j < i and m] > mj. Then looking at dr(n},...,n;) and
dr(nf,...,n}), all terms involving only my,...,m;_1 are the same so we can sub-
tract these off. Consider then the anti-key of m;, which is ¢3% 2igr™; any other
term which has not been subtracted off involves one of m;, ..., mg, and so by def-
inition of Y, its ternary representation lies entirely to the right of the anti-key of
m;, and so it will not be relevant for comparison. Thus it’s purely a matter of the
anti-key of m;; however all the non-m; variables in — Zié 1 n; are the same between

the two points. So since m} > m} we get Y ¢3% Zigr™ < 3% Xier ™ and

hence dp(nf,...,n}) > dr(nf,...,n}{).
Finally we just need to show that Y is “large enough”, i.e., that if we choose
mq,...,m in order, one by one, to yield a point (n1,...,n) in Y, that at each

step there are infinitely many choices. We don’t need to worry about it not being
in X since all sufficiently large points are in X; we just need to take care of the
additional restriction to be in Y.

So suppose we’ve already picked my,...,m;_1; we need to show that there are
infinitely many possible m; that will cause mq,...,m; to satisfy the restrictions
involving only my,...,m;. Note that the anti-key for any m; can only exclude the
variables my,...,m;. By assumption, we need not check any of the restrictions
where the anti-key of m; is the term 77 (using 77 and T3 from before), as Th
would involve variables not among mq,...,m;. And we need not check the terms
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excluding the variables my, ..., m; which are not the anti-key of m;, as those not
excluding m; have already been checked, and those that do can (if the restrictions
on the anti-key are satisfied) will follow automatically from the assumption that
the point is in X. So say the anti-key of m; is I and say J is the anti-key of some
m; with j < i; we just need to check there are infinitely many m; that will satisfy
this one restriction. But this one restriction is just that, for some constant b, we
have b— 370 my > =370y, dee, D00 mi — 30 ;> b. But all the variables
in this save for m; are mq,...,m;_1, which have already been determined; and m;
appears only in the former sum. Hence we need only pick m; large enough (based
onmi,... 7mi,1).

Hence for each myq,...,m;_1, if we just pick m; sufficiently large based on
mi,...,m;_1, no restrictions will be violated. Hence the order type of dp(Y)
is w”, and we are done. O

Corollary 9.3. No ternary family of rank k41 can be covered by any finite union
of expanded ternary families of rank k; hence in particular Byxi1 cannot be covered
by finitely many expanded ternary families of rank k.

Hence we have:

Theorem 9.4. For any r, the set D, is well-ordered, with order type at least w!"]
and less than w141,

Proof. Exactly the same as the proof of Theorem 8.5, with the same example pro-
viding the lower bound. Note once again that it is much easier to prove the lower
bound in this particular case than in general — indeed the family used to provide a
lower bound has an order type of exactly w!™!. [

Corollary 9.5. The set of all defects is well-ordered with order type w®.
When r is an integer, we can actually pin things down a bit more:

Theorem 9.6. Let k be an integer; then the order type of Dy, is exactly w”, unless
k =1, in which case it’s w + 1.

Proof. If it were any larger than w® + 1, it would contain a copy of w”, strictly
bounded above by a non-maximum element of Dy, hence an element of Dy less
than k. So there would be a copy of w* bounded away from k, contradicting
Lemma 9.4. Similarly, if it has order type equal to w* + 1, the maximum element
must be k itself, or else we again get a copy of w® bounded away from k. So the
order type is w* unless k is itself a defect, which happens only when k = 1. O

Note that we can use Lemma 9.4 or Lemma 8.5 to prove that in certain nice
cases, “most” elements of a ternary family must have complexity equal to the
obvious upper bound.

Corollary 9.7. Suppose F is a ternary family of rank k with UB(f) < k + 1.
Then the set S of m = F(ny,...,ng) with f(m) < BC(F)+3Y n; has S(x) =
O((logx)*~1), and has its defects have order type less than w*. Furthermore the

defects of F' have order type exactly w.

Proof. Any defect of a number in .S must be at most UB(f) — 1 < k, so S C A,
for some r < k, and the first result is immediate. To see that the defects of F' have
order type exactly w”, let T be the image of F' minus S, and note that since the
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defects of F have order type at least w¥, and the defects of S have order type less
than w®, the defects of T must have order type at least w”; however from the proof
of Proposition 9.1 we know it also has order tpe at most w*. So combining S and
T, the order type of the defects of F' is less than w*2; but since the defects of T" are
confinal in it, with order type w”, the overall order type must be w*. O

10. ALTERNATE FORMS OF WELL-ORDERING AND SOME CONJECTURES OF ARIAS

Corollary 9.5 was previously conjectured by Juan Arias de Reyna in [1] in a
slightly different form. What we have proved is that the set {n/37(/3 . n € N}
is a reverse well-ordered subset of Q, with reverse order type w*. It may be more
natural to discuss R(n) rather than n/37(")/3 but it is easy to translate between
these if we know f(n) modulo 3. Rather than consider the set of all defects, we
will separately consider the sets {n/3/(™/3 . n =0 (mod 3)}, {n/3/"/3 . n =2
(mod 3)}, {n/37(™/3 :n =1 (mod 3),n # 1}. (We exclude 1 for simplicity because
it does not follow the pattern of other n congruent to 1 modulo 3.)

These three sets are all reverse well-ordered, with reverse order type at most w®;
to see that each has reverse order type exactly w®“, consider the ternary families

Fp(ny,...ong)=(..((3-3"4+1)3" +1)...)3™ +1
Gr(ny,...,ng) =(..((2-3m +1)3" +1)...)3™ +1
Hi(ny,...,ng) =(..((4-3" +1)3" 4+1)..)3" +1
all of which provide an w*’
to Corollary 9.7.

We can multiply each of these sets by the appropriate constants to see that each
of the three sets {R(n) : n =0 (mod 3)}, {R(n) : n =2 (mod 3)}, {R(n) :n=1
(mod 3),n # 1} are reverse well-ordered with reverse order type w*. Or by using
different constants, we could put 31/(")/3] in the denominator instead of E(f(n)),
which is the form Arias originally conjectured it in. (Although his actual original
conjecture was slightly stronger and would have implied that f(3n) = f(n) + 3 for
all n > 1, which is false; removing that aspect leaves what we have proved here.)

Indeed, knowing this we can even recombine the three (together with 1) to say
that {R(n) : n € N} (or {n/3/()/3] . n € N}) is reverse well-ordered with reverse
order type w*. Since it’s the union of finitely many reverse well-ordered sets, it too
is reverse well-ordered, with reverse order type at least w“. To see that it is exactly
w", observe that if it were any larger, then some proper final segment of it would
have reverse order type w*; but this would decompose into a union of proper final
segments of the four sets making it up (all of them are coinitial in it as they all
get arbitrarily close to 0), implying that w® was at most the natural sum of finitely
many ordinals less than it, which is false.

Now let A ={R(n) : n =0 (mod 3)}, let B ={R(n) : n =1 (mod 3),n # 1},
let C ={R(n):n =2 (mod 3)}, and let aq, by, co denote the o’th element from
the top (0-indexed, so ag = by = ¢ = 1) in A, B, C respectively for a < w*. Arias
also made a conjecture which, reformulated slightly, states that for any g < w®,

s worth of defects meeting the obvious upper bound due

i agpn = (2/3)cs
nh_{rolo buptn = (3/4)a5
lim c,p4n = (2/3)bg

n—oo
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Looking at our actual data for this, it is easy to see the reason this holds for small
defect; take the first of these statements as an example. For every cg = R(n), we
get an infinite family of numbers n3* + 1, as well as a collection of infinite families
of numbers p(¢3* + 1) for pg = n, f(p) + f(q) = f(n); since these families occur
in the same order as the original n, it is the limit of R(n3* + 1) and the other
families — together with finitely many other things that don’t affect the limit —
that appear on the left hand side, and (for examples so far, anyway) this is always
eventually the obvious upper bound for sufficiently large k, and everything matches
up, with a factor of 2/3 or 3/4 to account for the change of modulo 3 complexity.
However, it is not at all clear that this pattern will hold up once we leave the realm
of products and +1’s, which we know eventually happens. So the conjecture is
somewhat explained, but far from proved.

11. “CUT-OFF” TERNARY FAMILIES AND THE STRUCTURE OF A,

We know that each B, can be covered by finitely many ternary families of rank
|7, but we suspect a slightly stronger statement is true:

Conjecture 11.1. B, is the union of finitely many ternary families of rank at
most |r|.

More generally, we conjecture the following slightly stronger statement:

Conjecture 11.2. Let F be a ternary family of rank k and let
R = sup d(F(x)).

k
zeZzo

Pick r < R and let S consist of all the elements in the image of F with d(n) < r.
Then S is the union of finitely many ternary families of rank less than k.

We cannot yet prove this but we can prove something close. Let us consider
what happens when we “cut off” a ternary family by restricting to those elements
with less than a fixed defect. First let us define the notion of an aligned subfamily
of a ternary family. Given a ternary family F', we can partially order its arguments
by comparing their keys. (In Section 9 we instead compared anti-keys; it is easy
to check that this yields the reverse partial order.) If we consider an argument
with maximal key and fix it, it is easy to check that the resulting function G
on the remaining arguments is again a ternary family; we will call this a direct
aligned subfamily of the original family. More generally we will say G is an aligned
subfamily of F' if it can be obtained from F' by repeatedly taking direct aligned
subfamilies (equivalently, by fixing a set of arguments which is upwardly closed in
the above order). A proper aligned subfamily of F' will mean one other than F
itself (and hence of lower rank than F).

(We say “aligned subfamily” rather than “subfamily” so that someone may later
define “subfamily” in a way that allows, e.g., (3" + 1)(3™ + 1) to be a subfamily
of (((3% +1)3% 4 1)3¢ + 1), since the former can be obtained from the latter by
restricting to a = ¢. Note that we we did not use any notion of subfamily in the
conjecture above — the example just given shows it would be false if we used aligned
subfamilies, and while a broader notion of subfamily would be appropriate, we have
not yet been able to sensibly define one.)

With this definition, we can show:
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Proposition 11.3. Let F be a ternary family of rank k and let
R = sup dp(x) = —3logs LC(F).

z€Zk,
Pick r < R and let S consist of all those F(x) with dp(n) < r. Then S can be
covered by finitely many proper aligned subfamilies of F .

Proof. Consider the “anti-key complements”, N; = EigZTi n; where T; is the anti-
key of n;. First observe that there is some C' such that if N; > C for every i then
dp(ny,...,nE) > r. To see this, note that every nonconstant term in the expanded-
out form of 3= 2™ F(ny,...,ng) is at most a constant times some anti-key, so for
any € > 0 we can pick C such that if N; > C for every i then 3= 2" F(ny,...,n;) <
LC(F) + ¢, which is equivalent to the statement above.

Hence S can be covered by the finitely many sets N; < C; now we show each of
these can be covered by finitely many proper aligned subfamilies. For any anti-key
T;, take a maximal anti-key T}/ containing it. Then we have ny < Ny < N;, so
each set N; < C can be covered by the finitely many sets ny = 0,1,...,C. But
since n;; has maximal anti-key, all of these are proper aligned subfamilies, and we
are done. (]

And now we can actually strengthen the statement slightly, to be even closer:

Corollary 11.4. Let F', k, R, r, S as in Proposition 11.3. Then S is the union of
finitely many proper aligned subfamilies of F'.

Proof. Induct on k. If & = 0, this is trivial. Otherwise, cover S with finitely
many direct aligned subfamilies of F' by Proposition 11.3 (obviously any aligned
subfamily of F' can be covered by a direct aligned subfamily). For any one of these
subfamilies G, we have that there is some C' such that, after rearranging coordinates,
G(z) = F(C,z) and dg(x) +3C = dp(C,z). So if we let T be the image of G, then
T NS consists of those G(x) with dg(x) < r —3C. So if r — 3¢ > —3logs LC(G),
then T' C S; whereas if r — 3¢ < —3logg LC(G), then by the inductive hypothesis,
TNS can be written as a union of images of finitely many proper aligned subfamilies
of G. Either way, we are done. O

The same reasoning shows that if we had written Conjecture 11.2 with “can be
covered by” instead of “is the union of”, the latter (and hence Conjecture 11.1)
would still be deducible from it. (In fact, this would be slightly easier, as while
there is an offset between dp and dg, there is none between d o F' and d o G).
Also note that the statement would remain true if were to define S with nonstrict
inequalities, since the values of dr are well-ordered, and also that one can easily
make analogous statement for expanded families.

The reason we cannot actually prove Conjecture 11.2 is that we cannot currently
prove any statements about when the complexity of some F(ng,...,ng) will be
different than usual. We expect this should not happen often but it’s not currently
clear how to formalize this.

12. CONJECTURES ON PINNING DOWN GROWTH RATE AND ORDER TYPE

So at this point we have shown that for real » > 0 with k¥ = |r|, we have that
B, (z) = O((logx)*), while A,(z) = O((logz)**1); and that D, is a well-ordered
subset of the R with order type at least w* and less than w*t!. However, so far
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the only case when we’ve pinned down any of these exactly for arbitrarily large r is
the order type of D, when 7 is an integer. Nonetheless, we have strong suspicions
about what the correct growth rates should be for all r, and what the correct and
order types should be for many r, so in this section we state and justify those
conjectures. In the process we will also state various other related conjectures we
have. We will also show that if made uniform, our conjecture about the growth
rate of A,(r) would in fact imply that f(n) < 3logsn, a statement that remains
unproven.

(If you prefer A, and B, to A, and B,, note that as long as 7 > 1, B,.(x) =
O(logz) and A, (z) = O((logz)?) while (B, \ B,)(z) = O(1) and (A, \ A4,)(z) =
O(logz) so B,(r) ~ B.(z) and A,(x) ~ A.(x); while if r < 1, we completely
understand what happens. Regarding D, see below.)

For 0 < s < 1 we will use D1(s) to denote the number of elements of D; which
are less than or equal to s; as we know from Corollary 5.3, this is always finite for
s < 1. To actually compute this number for a given s, note that the elements of
Dy, listed in order, begin with 0, d(2), 2d(2), 3d(2), 4d(2), 5d(2), d(5), 6d(2), d(7),
d(5)+d(2), 7d(2), d(7)+d(2), d(5) +2d(2), 8d(2), d(7) 4+ 2d(2), d(5) +3d(2), d(19),
9d(2), d(13), after which they are given by 1 — 3log;(1 + 37%) for k > 4.

Then we conjecture:

Conjecture 12.1. Suppose r = k + s where k an integer and s € Dy. Then the
order type of D, is wFD;(s), unless r = 1, in which case it is w + 1.

We make no statement about what happens if r is not of this form. (Note that
except when r < 1, this will be the order type of D, as well, as in no other case
can a number of this form be a defect, by Corollary 6.3 and Lemma 3.2.)

For the precise growth rate of B,.(x) and A, (), we make the following conjecture
when 7 is an integer:

Conjecture 12.2. For k > 0 an integer,

- (k+ 1)kt

Bi(w) ~ S —(log, )",

k-2
Auw) ~ EE T gy ).
k!2
(We actually have a conjecture for when r is arbitrary, but this is considerably
more complicated so we will state it later.)
Before we justify these ideas let us note that if we could prove Conjecture 12.2
with a uniformity condition — getting actual bounds rather than just asympotics

— we could prove that f(n) -~ 3loggn: The asymptotics would have to be turned

k— —
into actual bounds, but only a slight strenghthening (since (k+]€1!)2 : < (,fflj!g) is

needed:

Proposition 12.3. Let o = 0.3178... be the smallest positive solution to 2a —
aloga = 1, and assume that there is a § with 0 < f < « and functions P(z, k)
and Q(z, k) such that:

(1) P(x,k) is increasing in x and k and log P(x, Blogx 4+ 1) = o(x).

(2) Q(z,k) is increasing in x and k and (logx)Q(z, flogx + 1) = o(z).
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(8) For sufficiently large x we have for k > 1,

E*

Ap(z) = Ap-r(2) < P(2,k) 15 (log )" + Q(x, k).

Then there exist arbitrarily large n such that f(n) > (1023 + f)logn = (3+
Blog3)logsn; in particular, f(n) ~ 3logsn.

Note that the conditions on P and @ allow us quite a bit of wiggle room, as does
the fact that we only need to suppose that this bounds Ay (z) — Ag_1(x) rather
than Ag(z) itself.

Proof. For sufficiently large x, for all k£ > 1,

<ZP.TCZ logx”lJrZQ:cz
=0
Using the fact that P and Q are increasing, and folding in the ¢ = 0 term, we

obtain for k > 2

k
Z loggn)’+1 + (k+1)Q(z, k).

We will use here the version of Stlrhng’s formula, valid for n > 1, that n! =
n O(n
(27r)1/2"€—n‘/ﬁe 1(271), where 6(n) is a function satisfying 0 < 6(n) <1 for all n.
We get that

u (e?logx)ilogx
Ag(x) < 2P(2,k) Y " 4 (k+ 1D)Q(x, k)

~ (e?log )’
= 2P(x, k)(log z) Z i+ (k+1)Q(, k).

Now, assume that f(n) < (10 — + ) logn for all sufficiently large n. Set t(z) =
[Blog z]. Then by our initial assumption, we have that for sufficiently large x

t(x)

x < Ay (x) < 2P(x,t(z))(logz)

=1

(e?log )’
B (1) + 1)QU 1(x).

Now, consider the function x > %: This function is increasing with respect to
x as long as 0 < < C/e. So since a < e, for any 7 in the range we care about,

2 3 2 i+1
(e I?igm) < (e(ilj_’%ﬁl . So for sufficiently large x,

(e log z)H®)

T < 2P(l‘,t($))t(x) t(aj)t(x)

+ (t(x) + )Q(x, ()

and thus we have

(62 IOg x)ﬁ log z+1
(Blogz)7 e
(Blogx +2)Q(x, Blogx + 1).

Now, by assumption the @ term is o(z), so we must have for sufficiently large x

x <2P(z,Blogz +1)(Blogz + 1)
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(62 log IIZ)B log z+1

v < 3P(v, flogz +1)(Blogz +1) =y -~ vice

Taking logs of both sides, we obtain:

logz < log3+ log P(z,Blogx + 1) + log(Blogx + 1) +
(Blogx 4+ 1)(2 + loglog z) — (Blog z)(log(Blog x))

and hence

logz <log3+ log P(x,Blogz + 1) + log2 + logb + 2loglog
+281logz + 2loglog x — (Blog B) log ©
which is a contradiction for x sufficiently large so long as 28 — Sflogf < 1. O

Now to the ideas behind these conjectures. The main idea here is that given
r > 0 and letting k = |r| and s = r — k, the “bulk” of A, should consist of what we
will call the primary ternary families of rank k. We will define the set of primary
ternary families to be the smallest set of ternary families such that:

(1) If n € By, the singleton family () +— n is primary.

(2) If F and G are primary ternary families such that f(LC(F)LC(G)) =
fILC(F)) + f(LC(Q)); LC(F)LC(G) € A;; and neither F' nor G is the
singleton family () — 3; then F ® G is primary.

(3) If F is a primary ternary family, then so is Fj.

So for a primary ternary family F', we have LC(F) € A; and, by a straight-
forward induction, UB(F) < rk F + d(LC(F)), which forces UB(f) = rk F +
d(LC(F)). In particular, note that primary ternary families satisfy the conditions
of Corollary 9.7. Our idea that these should form the “bulk” of A, can be formalized
as follows:

Conjecture 12.4. Ifr > 0, k = |r|, s = r — k, then B, can be covered by (or
perhaps is even the union of) finitely many ternary families of rank at most k — 1,
together with the primary ternary families F of rank k such that d(LC(F)) < s.

Certainly these families are all contained in B,, which shows that in the case
that s € Dy, the order type of D, is at least w*D;(s) (since D, contains a copy
of w¥ with supremum 7 + s’ for each s’ < s in D), and if Conjecture 12.4 is true
then so is Conjecture 12.1 (since the union of finitely many copies of w*, all with
the same supremum, is again a copy of wk).

Here’s another consequence about order. Let ind r, for r # 1 a defect, denote
the ordinal corresponding to r when we partition the set of defects (1 excluded)
based on complexity modulo 3. Then we noted in Section 7 that for any n, we have
D(n) = 0 if and only if ind d(n) < w. We conjecture more generally:

Conjecture 12.5. For any whole number k, we have D(n) < k if and only if
ind n < Wkt

Why should this be true? Under the above hypotheses, let us locate the first
copy of w” to occur for a given congruence class of complexity modulo 3. These will
be the primary ternary families with leading coeflicients 3, 2, and 4, though which
one corresponds to which congruence class varies, since the resulting complexity (for
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those inputs where the obvious upper bound is met) would be 3+ k, 2+ k, and 4+ k,
respectively. But note that for n with f(n) =0 (mod 3), the integral defect D(n)
increments when d = 14 d(2),2 4 2d(2),3,4 + d(2),5 + 2d(2),6, .. .; for f(n) =2
(mod 3), it increments when d = 14 2d(2),2,3+d(2),4+2d(2),5,6+d(2),...; and
for n # 1, f(n) = 1 (mod 3), it increments when d = 1,2 4+ d(2),3 + 2d(2),4,5 +
d(2),6 + 2d(2),.... Knowing this it is easy to check that for f(n) fixed modulo 3,
the integral defect D(n) increments precisely when d(n) hits UB(F'), for F' chosen
from the families above to have complexity congruent to f(n) modulo 3 (when
the obvious upper bound is satisfied). So among numbers with complexity fixed
modulo 3, the point where D(n) first equals & would be precisely right after the
first occurrence of an w¥. Note also that our computations (discussed in Section 6)
show that this is true for £ = 1 as well as for £ = 0; indeed, so far out computations
support Conjecture 12.4 entirely.

Pinning down what the growth rate of A, should be will take a bit more work.
Assuming Conjecture 12.4, it will only increment when r passes a number of the
form k 4 s, where k an integer and s € D;. The question then is just how much
the primary ternary families with obvious upper bound k + s actually collectively
contribute.

Suppose we consider each primary ternary family as a labeled rooted tree, as
follows:

(1) The singleton family () — n is represented by a single node, labeled with
an n; unless n = 3, in which case we use a 1 instead.

(2) The tree for F; is made by taking the tree for F' and adding a node labeled
with a 1 as the new root.

(3) The tree for F ® G is made by taking the trees for F and G, deleting the
roots, disjoint unioning the results, and then adding a new root, labeled
with the product of the old roots.

Note that if a tree T corresponds to a family F', then number of nodes in the
tree is 1 + 1k F, and the product of the labels is LC(F') if all leaf 1’s are replaced
by 3’s. We will speak of the “rank of 77 interchangeably with the “rank of F”7. We
can actually set up a useful correspondence between the inputs of F' and the non-
root nodes of T recursively as follows: If F' is given by F() = m, there is nothing

to associate. If F' is given by F(ni,...,nk) = G(ny,...,n)Hng1,...,n5), we
will associate to n; whichever node corresponded to it in G or H. If F is given
by F(ni,...,ng) = G(ny,...,ng_1)3™ + C, we associate to each of ny,...,ngp_1

whichever node corresponded to it in G, and to nj we associate the root of the tree
for G (previously unassigned due to being a root).

Unsurprisingly, if F' and G have isomorphic trees, they are essentially the same.
(Here an “isomorphism” of these trees is assumed to preserve both root and la-
belling.) More precisely, if we have rank k families F, G with trees T, R respectively,
and an isomorphism ¢ : T' — R, then allowing ¢ to act on the inputs to F, G via
the above correspondence, we have F'(ny(1), ..., Nek)) = G(n1,...,n;). The proof
is a straightforward induction on k so we omit it.

Strictly speaking, we should speak of trees generating ternary families rather
than vice versa, as we don’t know that distinct (or rather, non-isomorphic) trees
yield distinct families. In fact we hypothesise that not only do non-isomorphic trees
yield distinct families (or rather, families that remain distinct after permutation of
inputs), but that given two non-isomorphic trees of rank k, the intersection S of the
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images of the resulting families is “small” in the sense that S(z) = O((logz)¥—1),
and thus in consdering overall growth rate we do not need to worry about overlap
between families from non-isomorphic trees. Or perhaps we can make a stronger
statement, such as that if the corresponding families are F' and G, then the set
of x such that F(z) € S could be covered by finitely many hyperplanes (and
obviously similarly with G). (We actually have further conjectures along these
lines — Conjecture 11.2 could actually be related, for instance — but we do not have
the space to discuss this further here.)
We further conjecture the following refinement of Theorem 8.4:

Conjecture 12.6. Let T be a tree corresponding to a primary ternary family F.
Then outside of a finite union of proper affine subspaces of the domain, F is |Aut T'|-
to-1; consequently, if S is the image of F', and S the expanded version,

1

~— (] k
Q 1 k+1
5(z) kl[Aut T (logs )™

We showed in the proof of Theorem 8.4 the relation between the size of the fibers
of F and the growth rate of S(z) and S(z); the question is, why should most of the
fibers be of size |Aut T'|? We can actually show that most of them will be at least
of size |Aut T'|, which proves the following refinement of Theorem 8.4:

Proposition 12.7. With T, F, S, and S as above, and letting N be the number
of topological sorts of T,

L (logy 2)* < 5(2) < (logy z)*,

1
NE! ~ KlAut T

)k—i—l

(logs z)* < S(a) S logs

1 1
N(k+1)! G DA 7]

Proof. 1t suffices to show that the family F'(nq,...,nk) is, outside a finite union of
proper affine subspaces of the domain, at least |Aut T'|-to-1 and at most N-to-1.
We'’ve actually already proved the upper bound on the size of the fibers — it is
easy to check that with our variable-vertex correspondence, T" minus the root is
actually the Hasse diagram for the partial order on the variables induced by the
partial order on the keys. Thus N, the number of topological sorts on T, is also the
number of total orders extending the partial order on the keys. So the claim that
F is usually at most N-to-1 is just what we showed in the proof of Theorem 8.4.
The lower bound on the fibers holds simply because for any o € Aut T, if we let o
act on the coordinates via our variable-vertex correspondence, then as noted above
we have F'(ng(1y, ..., No(k)) = F(n1,...,nx), and hence F is at least |Aut T'|-to-1
whenever all the coordinates are distinct.
O

As for why we expect that F will usually be |Aut GJ-to-1 instead of merely at
least such, the intuition is similar to our notion of “small intersection” above; just as
it seems two families should not have substantial overlap unless they are isomorphic,
so it seems that two forms of the same family (meaning, two total extensions of the
partial order on the keys, or anti-keys) should not have substantial overlap unless
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they are related by an automorphism. Note that we can make similar statements
for more general ternary families, but we must be more careful with how we define
the corresponding tree, and we must allow automorphisms to ignore powers of 3
when matching certain labels.

Continuing, observe that if we want to consider all rank-k trees corresponding
to primary ternary families F' with UB(F) = k + s, then in fact any rooted tree
on k + 1 nodes, labeled with numbers not divisible by 3 such that their product is
a most-efficient representation of a number with defect in s + Z, will do. Knowing
this, and assuming the conjectures above, the problem of figuring out just what
constant is contributed by the primary ternary ternary families F' with rk F' = k and
LC(F) = n reduces to counting the number of isomorphism classes of rooted trees
on k + 1 nodes with labels most-efficiently multiplying to n (ignoring powers of 3),
where each class is weighted inversely by its number of automorphisms. But when
isomorphism classes are weighted inversely by their number of automorphisms, the
result is just the total number of such objects, divided by (k+1)!. And we know how
to count rooted trees on k 4 1 vertices; by Cayley’s formula, this is just (k + 1)*.
Meanwhile, since the labelling is independent of the tree structure, we can just
count that separately and multiply.

So now we need to know how to most-efficiently represent elements of By (and
1) as products. For 1, there is nothing to check. For those elements of B; not
of the form 3™ + 1 for k > 4, it is easily checked that all these can be most-
efficiently represented by decomposition into primes. It remains to show that
for m > 4, the number 3™ + 1 can never be most-efficiently represented as a
product. To see this, note that if m > 4 and 3™ + 1 = ab is a most-efficient
representation, the factors a and b would have defects less than 1, and neither
could be powers of 3; so d(a),d(b) > d(2) and hence d(a),d(b) < 1 — d(2). But
Bi_q2) = {3,2,4,8,16,32,5,64,7,10,128,14,20,256} and no product of two of
these can be written as 3™ 4 1 for k£ > 4. Thus for our purposes, numbers of the
form 3™ + 1 for k > 4 are effectively “prime”. Hence if n = 3°p{* ...p;" where
each p; is either a non-3 prime, or of the form 3™ + 1 for m > 4, we get a total of
Hi 1 (k‘;“ ) possible labellings.

Unpacking all this leads us at last to the following conjecture for the asympotic
growth rate of A,., in general:

Conjecture 12.8. Given r > 0, let k = [r] and s = r — k. Then B.(x) ~
k— _

O ¥ — (logy 2)* and A, (x) ~ CU40— (logy )1

follows:

(1) For 0 <s<d(2), take C = 1.

(2) For d(2) < s < 2d(2), take C =k + 2.

(3) For 2d(2) < s < 3d(2), take C = (*17).

(4) For 3d(2) < s < 4d(2), take C = (k+4).

(5) For 4d(2) < s < 5d(2), take C = (k+5).

(6) For5d(2) < s < d( ), take C' = (*1°).

(7) For d(5) < s < 6d(2), take C = (*1¢) + &k + 1.

(8) For 6d(2) g < d(7), take C = (*}7) + k+ 1.
)
)

where C is determined as

) <
2

(9) For d(7 ) +d(2), take C = (*§7) +2(k + 1).

<s<d(5
(10) For d(5) + d(2) < s < 7d(2), take C = (*}7) + (k+ 1)(k + 3).
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(11) For 7d(2) < s < d(7) +d(2), take C = (*}®) + (k + 1)(k + 3).
1

(12) For d(7) +d(2) < s < d(5) +2d(2), take C = (*1%) + 2(k + 1)(k + 2).
(13) For d(5) +2d(2) < s < 8d(2), take C = (*I®) + (k + 1)((*1®) + k +2).
(14) For 8d(2) < s < d(7) +2d(2), take C = (*}°) + (k + 1)((*3?) + &k + 2).
(15) For d(7) +2d(2) < s < d(5) + 3d(2), take C = (*1%) +2(k + 1) (*1?).
(16) For d(5) + 3d(2) < s < d(19), take C = (") + (k + )((*1*) + (*1?)).
(17) For d(19) < s < 9d(2), take C = (") + (k+ 1)((*1") + (k;?’) )

+ (3

°)+

)+
(18) For 9d(2) < s < d(13), take C = (*§'%) + (b + 1)((*1*) +
k; )+ N - 1) where

(19) For d(13) < s < 1, take C = (’“510) (k+1)((k+4) +(
N=|- 10%3(3% —-1)].

Here then is the generalization of Conjecture 12.2 we promised earlier. Note
that similar ideas could presumaby be applied to other notions of defect, although
one may need to alter the definition of primary ternary families F' to allow the
more general D(LC(F')) = 0 rather than the current d(LC(F')) < 1. However even
without doing that we can see that, if we define A, to be the set of numbers n with
D(n) < k, the above ideas imply:

~ J— k—1
Conjecture 12.9. Ay (z) ~ Appi42402)(7) ~ (1@4)%(10% x)kt1

Unfortunately we do not at present seem to have any way to prove the crucial
Conjecture 12.4; our tools do not seem to have enough resolution for such a thing.
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